AGENDA
CMC
Congestion Management Committee
HYBRID IN-PERSON AND ZOOM VIRTUAL MEETING
IN-PERSON QUORUM REQUIRED
NOTE MEETING ROOM CHANGE:
Conference Room 609/610 GMD Planning & Regulation Building
2800 N Horseshoe Dr, Naples

Meeting ID: 838 6021 4017
Passcode: 623836

Please click here to be directed to the Zoom website, or you may dial in at 1-646-876-9923

January 20, 2021
2:00 p.m.

1. Call to Order
2. Roll Call
3. Approval of Agenda
4. Approval of January 20, 2021 Meeting Minutes
5. Open to Public for Comment on Items Not on the Agenda
6. Agency Updates
 A. FDOT
 B. MPO Director
 C. Other
7. Committee Action
 A. Endorse Bylaws Revision
 B. Endorse Local Roads Safety Plan
8. Reports and Presentations (May Require Committee Action)
9. Member Comments
10. Distribution Items (No presentation)
 A. none
11. Next Meeting Date:
 Next Meeting Date:
 May 19, 2021 at 2 p.m.
 Hybrid: In-Person Quorum Required,
 Virtual Access Available via ZOOM
12. Adjournment

PLEASE NOTE:

This meeting of the Congestion Management Committee (CMC) of the Collier Metropolitan Planning Organization (MPO) is open to the public and citizen input is encouraged. Any person wishing to speak on any scheduled item may do so upon recognition of the Chairperson. Any person desiring to have an item placed on the agenda shall make a request in writing with a description and summary of the item, to the MPO Director or CMC Committee Chair 14 days prior to the date of the next scheduled meeting of the CMC. Any person who decides to appeal a decision of this Committee will need a record of the proceedings pertaining thereto, and therefore may need to ensure that a verbatim record of the proceeding is made, which record includes the testimony and evidence upon which the appeal is to be based. In accordance with the Americans with Disabilities Act, any person requiring special accommodations to participate in this meeting should contact the Collier Metropolitan Planning Organization 72 hours prior to the meeting by calling (239) 252-5884. The MPO’s planning process is conducted in accordance with Title VI of the Civil Rights Act of 1964 and Related Statutes. Any person or beneficiary who believes that within the MPO’s planning process they have been discriminated against because of race, color, religion, sex, age, national origin, disability, or familial status may file a complaint with the Collier MPO by calling MPO Executive Director, Anne McLaughlin at (239) 252-5884 or by writing to Ms. McLaughlin at 2885 South Horseshoe Dr., Naples, FL 34104.
7. Call to Order

Mr. Khawaja called the meeting to order at 2:05 p.m.

2. Roll Call

Ms. McLaughlin called the roll and confirmed a quorum was present in the room.

Ms. Lantz motioned to allow CMC members to be able to participate remotely. Seconded by Mr. Scott. Carried unanimously.

CMC Members Present
Tony Khawaja, Chairman, Collier County Traffic Operations
Tim Pinter, Vice-Chair, City of Marco Island (left early)
Karen Homiak, CAC Representative
Lorraine Lantz, Collier County Transportation Planning
Joe Rauktys, City of Naples
Zachary Karto, Public Transit Neighborhood Enhancement (PTNE)
Don Scott, Lee County MPO
Dave Rivera, City of Naples

CMC Members Absent
Dan Summers, Collier County Emergency Management
Dr. Mort Friedman, BPAC Representative

MPO Staff
Anne McLaughlin, Executive Director
Karen Intriago, Administrative Assistant
Brandy Otero, Principal Planner
Josey Medina, Senior Planner

Others Present
Victoria Peters, FDOT
Pierre Beauvoir, Collier County Traffic Operations
Michael Tisch, Collier County
Trinity Scott, Collier County
3. Approval of the Agenda

Ms. Lantz moved to approve the agenda. Ms. Homiak seconded. Carried unanimously.

4. Approval of the September 16, 2020 Meeting Minutes.

Ms. Homiak moved to approve the minutes. Ms. Lantz seconded. Carried unanimously.

5. Public Comments for Items not on the Agenda

None.

6. Agency Updates

7. FDOT

Ms. Peters – FDOT’s Draft Tentative Work Program and Add-Delete-Defer Sheet published. Pleased to be able to program bike-ped projects, Safe Route To School (SRTS), SUNTrail grant. Tried to keep everything intact. Thought formal public comment period ended yesterday [1/19] but is open for a few more days. Committee members can always reach out to her and FDOT with comments. Anticipate release of Tentative Work Program snapshot, and vetting new priority projects end of February, early March.

Mr. Khawaja – Ms. Peters did very well for us. Thank you. Ms. Peters – noted collaboration and partnership between work program staff and local agency staff

B. MPO Executive Director

Ms. McLaughlin – None.

C. Other

Mr. Rivera - City of Naples 8th Street project is finally complete; has video, will share with MPO to distribute to committee showing before/after side-by-side comparison.

Mr. Beauvoir – FPN# 436971-1-98-01 Vehicle Traffic Count Station Project – All equipment purchased and received, and final invoice submitted by the County. Deployment is currently in progress with 16 of the 49 stations installed and configured. FPN# 433180-1-98-01 Arterial Monitoring Cameras – All Axis cameras and accessories received as of the week of January 18, 2021). Deployment is scheduled to begin no later than March 30, 2021. We will be in need of approximately $30,000, in County funds to purchase Ethernet Extender Cabinets and accessories for location determined to exceed the 100 meters transmission limits from signal cabinets. FPN# 435019-1-38-1 ATMS (Retiming Projects of Arterials) – Faller, Davis & Associates, Inc was awarded Contract No 19-7570 and the NTP was issued on October 15, 2020. The project is currently in progress and will be completed no later than October 7, 2021. FPN# 435019-1-98-
01 ITS Integrate/Standardize Network Communication – Received NTP from FDOT on June 16, 2020 with a completion date of December 31, 2022. RFP 20-7777 was advertised on October 7, 2020, 165 bid packages were viewed, of which, 4 submittals and 2 No Bids. A Selection Committee was convened, and Presidio Network Solutions LLC was selected as the winning firm. The Contract is currently under review at FDOT prior to going to the BCC for approval to award. The tentative date for this is March 23, 2021.

Mr. Pinter – City of Marco Island – no congestion management projects at this time, several other projects are underway

Ms. Lantz - Collier County Transportation Planning – congestion study on Immokalee between Livingston and Logan is underway. Seeing what can be done with intersections. Kick Off meeting will be February 1st. Reaching out to Homeowner Associations. Will have video to share with MPO to distribute to Committee.

Mr. Rivera - what is the construction project at Airport and Golden Gate Parkway? Mr. Khawaja – Shopping center adding Starbucks, project includes adding northbound left turn on Airport. Existing sidewalk is being replaced.

7. Committee Action

A. Elect Chair & Vice Chair

Mr. Khawaja – introduced the topic, required on annual basis. Brief discussion confirmed that current Chair, Vice Chair willing to serve another term.

Mr. Rivera made a motion to reelect previous Chair and Vice-Chair. Mr. Scott seconded. Passed unanimously.

B. Final Evaluation, Scoring and Ranking of Project Priorities

Mr. Khawaja – introduced topic, asked Collier County Transportation Planning to start the presentations.

Ms. Lantz – Presented PPT on 91st Street Sidewalk Project. [available on request to MPO office]; request is for $640.5k. approximately 1 mile in length. Have ROW. Slides demonstrate consistency with strategies [that the MPO issued with Call for Projects]; multimodal – includes sidewalk, transit; addresses safety, application references 4 pedestrian and 4 bike crashes during time period studied; began to describe how project scored according to scoring matrix distributed by MPO.

Mr. Khawaja – don’t think it’s necessary to score projects. What are options for ranking them? Ms. McLaughlin – could go through exercise of scoring projects and have scoring determine the ranking; could rank according to constructability, timeliness, how ready is
project to go to design or construction; previous Call for Projects took a round-robin approach with submitting agencies leading with the first priority, although this year, the only submitting agency is the County [Growth Management Department]. Ms. Peters – is County coordinating 91st St project with utility project? Can you suggest a specific year when it will be ready to program? Ms. Lantz – yes, project will be coordinated with storm water project; this Call for Projects is for programming new 5th year of the TIP, the project will be ready then.

Ms. Lantz – continued PPT, moving to Vanderbilt Beach Rd (VBR) Corridor Study – Airport to Livingston. Mr. Khawaja – noted that Traffic Ops is putting in signal at Orchard. Ms. Lantz – request is for $300k for feasibility study to look at physical roadway capacity now and in the future, determine ways to enhance or improve the corridor; have documentations related to ROW documentation, but study will include ROW survey; VBR identified as hotspot for congestion in Transportation System Performance Report (TSPR) and is on Congestion Management Process 2020 Implementation Matrix. Level of Service (LOS) D now, expected to fail in 2023; with VBR extension, traffic will get worse, change classification from Major Collector to Arterial; bike-ped facilities in place; more extensive crash history – total 1000 crashes, 1 fatality, 5 peds, 18 cyclists-involved crashes over 15-year period.

Mr. Beauvoir – County Traffic Operations projects – Intelligent Transportation System (ITS) Fiber Optic and FPL Infrastructure Improvement for Mid-block ITS locations; 18 corridors; Bayshore example – lack of visibility at midblock because of landscaping; stagger for complete coverage; Livingston corridor example, when crash occurs on I-75, drivers take Imperial Parkway to Livingston, traffic backs up; request is for $830k; next project – ITS Vehicle Detection Update/Installation at Signalized Intersections throughout County – request is $991.1k to replace out-of-date vehicle detection cameras at 73 intersections. Mr. Scott – are we getting closer to being able to count vehicles using cameras? Mr. Khawaja – better but still make mistakes. Work well in daytime, less so at night. Mr. Beauvoir – in-ground loop detection works better for counts, eventually Lidar will be available. Next project – ITS Advanced Traffic Management System (ATMS) Retiming of Arterials – last set of intersections needing retiming. Request is for $698k. Mr. Pinter – application has two different total costs – one is $698k and the other is $881,850, which is it? Mr. Beauvoir – $881,850 is correct, cost estimate has been updated. Will resubmit with correction. Ms. Peters – any design or construction associated with project? Mr. Khawaja – summarized project phasing on the three Traffic Operations submittals.

Mr. Khawaja – don’t think need ranking, projects total about $3.6m and we have $5m available to program. Ms. Peters – new 5th year of Work Program is FY27; anyone opposed to going earlier if money available in 25,26,27? Mr. Khawaja – Traffic Ops ok with moving ahead if money available. Ms. Lantz – need to coordinate with stormwater utilities on 91st St sidewalk project; on VBR – we want some of the extension done to see impact on traffic.
Ms. Homiak made a motion to submit all five projects. Ms. Lantz seconded. Carried unanimously.

8. Reports and Presentations (May Require Committee Action)
 None.

9. Member Comments
 None.

10. Distribution Items

 A. 2021 Meeting Calendar

11. Next Meeting Date

 March 17, 2020 – 2:00 p.m.
 Hybrid: In-Person Quorum Required, Virtual Access Available via Zoom

12. Adjournment

 There being no further comments or business to discuss, Mr. Khawaja adjourned the meeting at 3:15 p.m.
EXECUTIVE SUMMARY
Committee Action
Item 7A

Endorse Amended Congestion Management Committee (CMC) Bylaws

OBJECTIVE: To endorse the amended CMC bylaws.

CONSIDERATIONS: As discussed at the January CMC meeting, MPO staff submitted a proposed revision to Section V.E. of the CMC bylaws to reduce the number of committee members needed to establish an in-person quorum to three (3). The amendment also clarifies that a majority of the voting members participating in the meeting is required to take affirmative action on issues before the committee. The proposed change is shown in Attachment 1 in strikethrough/underline format followed by the clean version.

The MPO Board will vote on the amendment at their March 12, 2021 meeting. Staff will report the outcome to the CMC at its meeting on March 17th.

STAFF RECOMMENDATION: For the committee to endorse the amended CMC bylaws based upon action taken by the MPO Board on March 12, 2021.

Prepared By: Anne McLaughlin, MPO Director

Attachments:

1. Draft 2021 CMC Bylaws - Track Changes and Clean Version
BYLAWS

for

Congestion Management Committee

of

COLLIER METROPOLITAN PLANNING ORGANIZATION
The following Bylaws guide the proper functioning of the Collier Metropolitan Planning Organization’s (MPO) Congestion Management Committee (CMC). The intent is to provide procedures and policies to assist the CMC to accomplish its purpose.

SECTION I NAME

The name of this Committee shall be the Congestion Management Committee (CMC) of the Collier Metropolitan Planning Organization (MPO).

SECTION II PURPOSE

A. The CMC shall serve the MPO in an advisory capacity on technical matters relating to the update of the MPO’s Congestion Management Process (CMP) and the coordination of the CMP with regional Congestion Management System and Intelligent Transportation System architecture.

B. The functions of this CMC shall include, but not be limited to, the following:

1. To promote coordination among the MPO, Technical Advisory Committee (TAC), Citizens Advisory Committee (CAC), Bicycle and Pedestrian Advisory Committee (BPAC) and CMC in the identification and resolution of common transportation problems;
2. To identify potential multimodal projects that will reduce congestion on the network and/or improve the intelligent transportation system;
3. To review studies, plans, programs, or public information documents for potential impacts to congestion on the network and/or impacts to the intelligent transportation system and advise the MPO thereof;
4. To make priority recommendations for Congestion Management System/Intelligent Transportation System (CMS/ITS) projects to the MPO;
5. To review and update the Congestion Management Process (CMP) as needed;
6. To help review and update the Congestion Management Process component of the Long Range Transportation Plan;
7. To assist in the development and evaluation of performance measures of potential priorities,
8. To monitor CMS/ITS projects’ performance after implementation.

SECTION III MEMBERSHIP APPOINTMENT AND TERM OF APPOINTMENT

A. Members:

The CMC shall be composed of eleven (11) voting members appointed by the division, department or agency that they represent. CMC voting and non-voting members may designate an alternate to replace them in their absence.
B. Appointment and Term of Appointment:

Each member agency representative shall be duly appointed by the member agency and shall serve at the pleasure of his or her member agency. The MPO Staff shall be notified by the Department Director/Administrator of the member agency in writing, including electronic communication of the appointment or replacement of a member agency’s representative.

C. Alternate Member:

An official alternate member can be designated by the affected voting-member agency by providing such designation in writing to the MPO. The so designated alternate member has the capacity to act on behalf of the voting member. The alternate member may vote only in the absence of the official voting member on a one-vote-per-member basis.

D. The Voting Member Agencies are as follows:

1. VOTING MEMBER AGENCIES

Collier County Growth Management Department
 Transportation Planning Division
 Traffic Operations Division
Collier County Public Services Department
 Public Transit & Neighborhood Enhancement (PTNE) Division
Collier County Administrative Services Department
 Emergency Management Division
Collier County Public Schools
 Transportation Department
City of Naples
 Engineering/Planning Representative
 Traffic Operations Representative
City of Marco Island
 Public Works Department
Collier MPO’s Citizen Advisory Committee
Collier MPO’s Bicycle and Pedestrian Advisory Committee
Lee County MPO

The MPO staff will be responsible for maintaining a current list of the names of voting members.
SECTION IV OFFICERS, DUTIES AND TERMS OF OFFICE

A. Officers and Terms of Office:

1. A Chair and a Vice-Chair of the CMC shall be elected at the first regularly scheduled meeting of each calendar year when a quorum is attained and shall hold the offices until their successors are elected.

2. Any voting member may nominate or be nominated as an officer. All elections shall be held by the majority vote of voting members present.

B. Chair Duties:

1. The Chair and Vice-Chair shall be voting members of the CMC.

2. The Chair shall preside at all meetings and shall be responsible for the conduct of such meetings. In the absence of the Chair or Vice-Chair, the respective alternate may only act as a regular voting member of the Committee.

C. Vice-Chair Duties:

1. The Vice-Chair shall, during the absence of the Chair, have and exercise all of the duties and powers of the Chair.

2. The Vice-Chair shall also perform such duties as may be assigned by the Chair.

D. Absenteeism of an Officer:

If both the Chair and Vice-Chair are absent from a meeting, the Committee shall elect a voting member present to be the Chair for that meeting. No Alternate member of the Chair or Vice-chair can assume the responsibilities of his/her official roles.

1. Any vacancy in an office created by a resignation or replacement of an Officer shall be filled by a majority vote of voting members.

2. The Officer so elected shall fill the remainder of the unexpired term of the vacant office.

3. If, at any time, the Committee believes that an Officer is not performing his/her duties in accordance with Section IV, Subsection B, it may recommend the removal of the Officer to the MPO. An officer may be removed from office by the MPO Board at a regular MPO meeting by a simple majority vote.

SECTION V MEETINGS

A. Regular Meetings:
The CMC shall meet bimonthly at a date, time and place acceptable to a majority of the voting membership. The date or time may be changed by a majority vote if seven (7) calendar days notice is given to the voting members.

B. Special Meetings:

Special meetings may be called by the Chair with a minimum of three (3) calendar day’s notice, indicating the reason for the meeting and notifying all member agencies.

C. Notice of Meetings:

A minimum of seven (7) calendar days notice shall be given for regular meeting. Agendas should be sent with meeting notices and, whenever possible, minutes of the previous meeting, at least seven (7) calendar days prior to any regular meeting and at least three (3) calendar days prior to any special meeting.

D. Agendas:

MPO staff is responsible for preparing agendas for each CMC meeting. Members may request to place items on the tentative agenda by notification to the MPO staff.

E. Quorum:

1. In order to conduct official business, a quorum shall consist of at least three (3) of the five (5) voting CMCS/ITS Committee members being physically present at each meeting.

2. A vote of a majority of the quorum voting CMC members shall be required to take affirmative action on issues before the committee, necessary to act on an item brought before the __________ CMC.

SECTION VI AMENDMENTS

A. Amendments

Recommended amendments to these Bylaws may be endorsed by an affirmative quorum vote of the CMC, provided a copy of the proposed amendment(s) shall have been sent to every member at least seven (7) calendar days prior to a vote for endorsement by the CMC. All proposed amendments shall be voted on at regular meetings. Any and all amendments to the Bylaws will become effective upon adoption by the Collier MPO.

B. Prior Agreement:
These Bylaws supersede and replace any and all Bylaws previously adopted by the Congestion Management System/Intelligent Transportation System Committee.

C. Effective Date:

The Bylaws for the Congestion Management Committee of the Collier Metropolitan Planning Organization were hereby endorsed in an open session with a quorum present and voting on September 16, 2020, __________, 2021 by the Congestion Management Committee and subsequently adopted by the Collier Metropolitan Planning Organization on March 12, 2021November 13, 2020.
CONGESTION MANAGEMENT SYSTEM/
INTELLIGENT TRANSPORTATION SYSTEM COMMITTEE

By: _______________________________
 Anthony Khawaja
 CMC Chair

COLLIER METROPOLITAN PLANNING ORGANIZATION

By: _______________________________
 Councilwoman Elaine Middelstaedt, Esq. MPO Chair

ATTESTED BY: _______________________________
 Anne McLaughlin
 MPO Executive Director

COUNTY ATTORNEY

By: _______________________________
 Scott R. Teach
 Deputy County Attorney
BYLAWS

for

Congestion Management Committee

of

COLLIER METROPOLITAN PLANNING ORGANIZATION
The following Bylaws guide the proper functioning of the Collier Metropolitan Planning Organization's (MPO) Congestion Management Committee (CMC). The intent is to provide procedures and policies to assist the CMC to accomplish its purpose.

SECTION I NAME

The name of this Committee shall be the Congestion Management Committee (CMC) of the Collier Metropolitan Planning Organization (MPO).

SECTION II PURPOSE

A. The CMC shall serve the MPO in an advisory capacity on technical matters relating to the update of the MPO's Congestion Management Process (CMP) and the coordination of the CMP with regional Congestion Management System and Intelligent Transportation System architecture.

B. The functions of this CMC shall include, but not be limited to, the following:

1. To promote coordination among the MPO, Technical Advisory Committee (TAC), Citizens Advisory Committee (CAC), Bicycle and Pedestrian Advisory Committee (BPAC) and CMC in the identification and resolution of common transportation problems;
2. To identify potential multimodal projects that will reduce congestion on the network and/or improve the intelligent transportation system;
3. To review studies, plans, programs, or public information documents for potential impacts to congestion on the network and/or impacts to the intelligent transportation system and advise the MPO thereof;
4. To make priority recommendations for Congestion Management System/Intelligent Transportation System (CMS/ITS) projects to the MPO;
5. To review and update the Congestion Management Process (CMP) as needed;
6. To help review and update the Congestion Management Process component of the Long Range Transportation Plan;
7. To assist in the development and evaluation of performance measures of potential priorities,
8. To monitor CMS/ITS projects' performance after implementation.

SECTION III MEMBERSHIP APPOINTMENT AND TERM OF APPOINTMENT

A. Members:

The CMC shall be composed of eleven (11) voting members appointed by the division, department or agency that they represent. CMC voting and non-voting members may designate an alternate to replace them in their absence.
B. Appointment and Term of Appointment:

Each member agency representative shall be duly appointed by the member agency and shall serve at the pleasure of his or her member agency. The MPO Staff shall be notified by the Department Director/Administrator of the member agency in writing, including electronic communication of the appointment or replacement of a member agency's representative.

C. Alternate Member:

An official alternate member can be designated by the affected voting-member agency by providing such designation in writing to the MPO. The so-designated alternate member has the capacity to act on behalf of the voting member. The alternate member may vote only in the absence of the official voting member on a one-vote-per-member basis.

D. The Voting Member Agencies are as follows:

1. **VOTING MEMBER AGENCIES**

 Collier County Growth Management Department
 Transportation Planning Division
 Traffic Operations Division

 Collier County Public Services Department
 Public Transit & Neighborhood Enhancement (PTNE) Division

 Collier County Administrative Services Department
 Emergency Management Division

 Collier County Public Schools
 Transportation Department

 City of Naples
 Engineering/Planning Representative
 Traffic Operations Representative

 City of Marco Island
 Public Works Department

 Collier MPO's Citizen Advisory Committee

 Collier MPO's Bicycle and Pedestrian Advisory Committee

 Lee County MPO

The MPO staff will be responsible for maintaining a current list of the names of voting members.
SECTION IV OFFICERS, DUTIES AND TERMS OF OFFICE

A. Officers and Terms of Office:

1. A Chair and a Vice-Chair of the CMC shall be elected at the first regularly scheduled meeting of each calendar year when a quorum is attained and shall hold the offices until their successors are elected.

2. Any voting member may nominate or be nominated as an officer. All elections shall be held by the majority vote of voting members present.

B. Chair Duties:

1. The Chair and Vice-Chair shall be voting members of the CMC.

2. The Chair shall preside at all meetings and shall be responsible for the conduct of such meetings. In the absence of the Chair or Vice-Chair, the respective alternate may only act as a regular voting member of the Committee.

C. Vice-Chair Duties:

1. The Vice-Chair shall, during the absence of the Chair, have and exercise all of the duties and powers of the Chair.

2. The Vice-Chair shall also perform such duties as may be assigned by the Chair.

D. Absenteeism of an Officer:

If both the Chair and Vice-Chair are absent from a meeting, the Committee shall elect a voting member present to be the Chair for that meeting. No Alternate member of the Chair or Vice-chair can assume the responsibilities of his/her official roles.

1. Any vacancy in an office created by a resignation or replacement of an Officer shall be filled by a majority vote of voting members.

2. The Officer so elected shall fill the remainder of the unexpired term of the vacant office.

3. If, at any time, the Committee believes that an Officer is not performing his/her duties in accordance with Section IV, Subsection B, it may recommend the removal of the Officer to the MPO. An officer may be removed from office by the MPO Board at a regular MPO meeting by a simple majority vote.

SECTION V MEETINGS

A. Regular Meetings:
The CMC shall meet bimonthly at a date, time and place acceptable to a majority of the voting membership. The date or time may be changed by a majority vote if seven (7) calendar days notice is given to the voting members.

B. Special Meetings:

Special meetings may be called by the Chair with a minimum of three (3) calendar day’s notice, indicating the reason for the meeting and notifying all member agencies.

C. Notice of Meetings:

A minimum of seven (7) calendar days notice shall be given for regular meeting. Agendas should be sent with meeting notices and, whenever possible, minutes of the previous meeting, at least seven (7) calendar days prior to any regular meeting and at least three (3) calendar days prior to any special meeting.

D. Agendas:

MPO staff is responsible for preparing agendas for each CMC meeting. Members may request to place items on the tentative agenda by notification to the MPO staff.

E. Quorum:

1. In order to conduct official business, a quorum shall consist of at least three (3) of the voting members being physically present at each meeting.
2. A vote of a majority of the participating voting CMC members shall be required to take affirmative action on issues before the committee.

SECTION VI AMENDMENTS

A. Amendments

Recommended amendments to these Bylaws may be endorsed by an affirmative vote of the CMC, provided a copy of the proposed amendment(s) shall have been sent to every member at least seven (7) calendar days prior to a vote for endorsement by the CMC. All proposed amendments shall be voted on at regular meetings. Any and all amendments to the Bylaws will become effective upon adoption by the Collier MPO.

B. Prior Agreement:

These Bylaws supersede and replace any and all Bylaws previously adopted by the
Congestion Management Committee.

C. Effective Date:

The Bylaws for the Congestion Management Committee of the Collier Metropolitan Planning Organization were hereby endorsed in an open session with a quorum present and voting on ______________________, 2021 by the Congestion Management Committee and adopted by the Collier Metropolitan Planning Organization on March 12, 2021.
CONGESTION MANAGEMENT SYSTEM/
INTELLIGENT TRANSPORTATION SYSTEM COMMITTEE

By: ______________________
 Anthony Khawaja
 CMC Chair

COLLIER METROPOLITAN PLANNING ORGANIZATION

By: ______________________
 Councilwoman Elaine Middelstaedt, Esq. MPO Chair

ATTESTED BY: ______________________
 Anne McLaughlin
 MPO Executive Director

COUNTY ATTORNEY

By: ______________________
 Scott R. Teach
 Deputy County Attorney
EXECUTIVE SUMMARY
COMMITTEE ACTION
ITEM 7B

Endorse the Draft Local Roads Safety Plan

OBJECTIVE: For the Committee to endorse the Draft Local Roads Safety Plan (LRSP).

CONSIDERATIONS: The Draft LRSP results from a proposal submitted by Collier County Traffic Operations and prioritized by the CMC and the MPO Board in 2013. MPO staff distributed a previous draft for review and comment in the November 2020 agenda packet. The meeting, however, was canceled for lack of an in-person quorum. MPO staff conducted outreach to member agencies to add commentary on current practices to the Recommendations posed by the consultant, Tindale Oliver. In doing so, we realized that the majority of the Recommendations were sufficiently addressed either by current agency practices or incorporated in the MPO’s Bicycle and Pedestrian Master Plan (2019), Transportation System Performance Report & Action Plan (TSPR) approved in September, 2020 and the 2045 Long Range Transportation Plan (LRTP) approved in December 2020.

MPO staff has drafted the revisions shown in Track Changes, Attachment 1 and a new table summarizing Current and Enhanced Practices is shown in Attachment 2. The revisions are based on our review of the TSPR, the LRTP and input received from Collier County staff, the Collier County Sheriff’s Office, and City of Naples staff. The next steps in the process are to seek endorsement from the CAC and TAC at their March 29 meetings and to continue to work on editing and formatting the document prior to presenting it to the MPO Board for approval in April or May, 2021. MPO staff will report back to the CMC on the status of the LRSP at the May 19, 2021 meeting.

STAFF RECOMMENDATION: That the Committee endorse the Draft Local Roads Safety Plan with the understanding that MPO staff will seek endorsement from the CAC and TAC as well, and continue to work on editing and formatting the document prior to presenting it to the MPO Board for approval.

Prepared By: Anne McLaughlin, MPO Director

Attachment:
2. New Strategies Table with Current and Enhanced Practices added
Table of Contents

Section 1: Executive Summary ... 1-1
 Introduction and Intent.. 1-1
 Key Conclusions and Recommendations .. 1-2
 Plan Organization... 1-5

Section 2: Statistical Analysis... 2-1
 Introduction and methodology .. 2-1
 Crash Data analysis .. 2-1
 Traffic Citation Analysis .. 2-10
 Emphasis Area 1: Non-Motorized Crashes .. 2-14
 Emphasis Area 2: Intersection Crashes (Angle and Left-Turn) .. 2-18
 Emphasis Area 3: Lane Departure .. 2-20
 Emphasis Area 4: Same Direction (Rear-End and Sideswipe) Crashes 2-22
 Key Conclusions... 2-24

Section 3: Recommendations .. 3-1
 Introduction and Problem Statement ... 3-1
 Infrastructure Strategies .. 3-3
 Non-Infrastructure Strategies .. 3-29

Section 4: Implementation Plan ... 4-1
 Local Best Practices... 4-1
 Infrastructure Implementation Processes .. 4-1
 Non-Infrastructure Implementation Processes .. 4-9
 Relationship to MPO Processes .. 4-13
 Monitoring and Performance Measures ... 4-1
 Summary of Low Cost/Short-Term Strategies .. 4-2

Appendices

Appendix 1: Glossary of Technical Terms (Pending)
Appendix 2: Crash Data Quality Control Technical Memorandum (Pending)
Appendix 3: Community Survey Summary (Pending)
List of Figures

Figure 2-1: Crashes by Roadway Functional Classification ... 2-3
Figure 2-2: Crash Distribution by Major Roadway Maintenance Authority ... 2-4
Figure 2-3: Crash Distribution by Major Roadway Number of Lanes ... 2-4
Figure 2-4: Major Roadway Crashes by Sub-Area ... 2-5
Figure 2-5: Lighting Conditions .. 2-6
Figure 2-6: Most Common Collier County Moving Violations .. 2-10
Figure 2-7: Traffic Citation by Law Enforcement Agency (LEA) .. 2-11
Figure 2-8: Non-Motorized Crash Heat Map ... 2-17
Figure 2-9: Angle and Left Turn Crash Heat Map .. 2-19
Figure 2-10: Lane Departure Crash Heat Map ... 2-21
Figure 2-11: Same Direction Crash Heat Map ... 2-23
Figure 3-1: FDOT Context Classification System .. 3-7
Figure 3-2: Roundabout Safety Benefits .. 3-10
Figure 3-3: Diagram of Signalized RCUT Intersection .. 3-11
Figure 3-4: Diagram of Median U-Turn Intersection ... 3-11
Figure 3-5: Displaced Left Turn Intersection .. 3-13
Figure 3-6: Quadrant Intersection Diagram ... 3-14
Figure 3-7: Truck Turning Into Interior Lane ... 3-15
Figure 3-8: Truck Apron Helps Slow Turning Cars ... 3-16
Figure 3-9: Preferred Right-Turn Island Design Parameters and “Engaged” Median 3-16
Figure 3-10: Proper Crosswalk Placement and Markings ... 3-17
Figure 3-11: Countdown Pedestrian Signal .. 3-17
Figure 3-12: Conversion of Full Access Median to Dual Directional Median .. 3-18
Figure 3-13: Graphic Depicting Random vs. Platooned Traffic .. 3-20
Figure 3-14: Photo Depicting "Safety Edge" Pavement Design ... 3-21
Figure 3-15: Mitered-End-Section Drain Pipe ... 3-22
Figure 3-16: Rendering of 2-way Cycle Track in Downtown Tampa along Jackson Street/SR-60 3-23
Figure 3-17: Median Refuge Breaks Complex Crossing into Two Simple Crossings 3-25
Figure 3-18: RRFB ... 3-25
Figure 3-19: Pedestrian Hybrid Beacon Sequence ... 3-26
Figure 3-20: Simplified Intersection Lighting ... 3-27
Figure 3-21: LED Lighting ... 3-27
Figure 3-22: History and Future of Autonomous Vehicles .. 3-28
Figure 3-23: Vehicle Autonomy Levels and Features ... 3-29
Figure 3-24: Example Retroreflective Promotional Materials .. 3-31
Figure 3-25: Florida Teen Safe Driving Coalition Homepage .. 3-32
Figure 3-26: Walk Wise Class Photo ... 3-33
Figure 3-27: Example Wikimaps Issue Page .. 3-34
List of Tables

Table 1-1: Emphasis Area Summary ... 1-2
Table 1-2: Infrastructure Strategies Matrix .. 1-4
Table 1-3: Non-Infrastructure Strategies Matrix ... 1-4
Table 2-1: Comparison of Collier County and State of Florida Crash Rates ... 2-2
Table 2-2: VMT Distribution of Collier County and Florida by Functional Classification 2-3
Table 2-3: Traffic Citations per Capita and per VMT Comparison ... 2-11
Table 2-4: Traffic Citations (State Totals vs. Collier County) Collier LRSP Emphasis Areas 2-12
Table 2-5: Emphasis Area Summary ... 2-14
Table 2-6: Non-Motorized High Crash Corridors .. 2-16
Table 2-7: Intersection (Angle and Left-Turn) High-Crash Corridors ... 2-18
Table 2-8: Lane Departure High Crash Corridors .. 2-20
Table 2-9: Same Direction High Crash Corridors .. 2-22
Table 3-1: Infrastructure Strategies Matrix .. 3-6
Table 3-2: Non-Infrastructure Strategies Matrix .. 3-29
Table 4-1: Speed Management Implementation Steps ... 4-2
Table 4-2: Alternative Intersection (ICE) Implementation Steps .. 4-3
Table 4-3: Pedestrian Design Best Practice Implementation Steps ... 4-4
Table 4-4: Median Restriction/Access Management Implementation .. 4-5
Table 4-5: Right Turn Lane Strategy Implementation .. 4-5
Table 4-6: Rural Road Safety Strategy Implementation .. 4-6
Table 4-7: Shared Use Pathways Implementation ... 4-7
Table 4-8: Mid-Block Crossings and Median Refuge Implementation ... 4-7
Table 4-9: Intersection Lighting Retrofit Implementation ... 4-8
Table 4-10: Law Enforcement Implementation Strategies ... 4-9
Table 4-11: Safety Material Distribution ... 4-10
Table 4-12: Supplemental Drivers’ Education Training .. 4-10
Table 4-13: Small Group Outreach .. 4-11
Table 4-14: Continuing Education .. 4-11
Table 4-15: LRSP Performance Measures Monitoring Process .. 4-1
Table 4-16: Short-Term/Low Cost Infrastructure Strategies ... 4-3
SECTION 1: EXECUTIVE SUMMARY

Introduction and Intent

Collier MPO’s Local Road Safety Plan (LRSP) is a collaborative and comprehensive plan that identifies transportation safety issues and provides a framework for reducing fatalities and serious injuries on highways and local public roads. This framework is developed through data analysis and public outreach, along with the development and adoption of recommendations. The data analysis step allows for the identification of emphasis areas which represent the most critical safety concerns within Collier County. Emphasis areas are then matched with strategies and action steps for reducing roadway fatalities and serious injuries.

These strategies will be grouped under the 4 Es of safety: Engineering, Enforcement, Education, and Emergency Response.

In addition to a thorough analysis of safety issues in Collier County and development of recommended strategies, other high-level objectives of this project include the following:

- Quality Control (QC) of Collier Crash Data Management System to ensure the best quality data for development of the Plan and identification of potential areas of improvement for crash data reporting.
- Develop implementable short-term recommendations to address critical safety issues.
- Provide input to Collier MPO’s 2045 Long Range Transportation Plan (LRTP) to address long-term strategies and funding needs.
- Identify ways the MPO can support FDOT’s Vision Zero targets. Achieve buy-in/community support to move Collier County towards adoption of Vision Zero.

The Collier County MPO LRSP incorporates strategies currently being promoted by the Federal Highway Administration (FHWA) and Florida Department of Transportation (FDOT) and will be implemented in close coordination with these agencies, Collier MPO Member Governments, and local law enforcement.
Key Conclusions and Recommendations

Based on the data analysis conducted as part of the Collier MPO LRSP, four key Collier County LRSP emphasis areas were identified for further analysis and identification of high-crash corridors. The following crash types were identified as having a high severity ratio (constituting a greater percentage of severe crashes than all crashes) and accounting for a high overall number of severe crashes (more than 5% of total severe crashes):

- Bicycle
- Pedestrian
- Left-turn
- Angle
- Hit fixed object

Additionally, rear-end, single vehicle, head-on, and run-off-road crash types either account for a high frequency of severe crashes or have a high severity ratio. Based on similar characteristics and countermeasure profiles, these crash types can be combined to form the following Emphasis Areas:

- Non-Motorized (Bicycle and Pedestrian Crashes)
- Intersection (Left-Turn and Angle Crashes)
- Lane Departure (Hit Fixed Object, Single Vehicle, Head-On, and Run-Off-Road Crashes)
- Same Direction (Rear-End and Sideswipe Crashes)

Table 1-1 is a summary of Emphasis Area crash statistics excluding private roads and interstate highways. Each emphasis area is discussed further in Section 2: including maps and tables illustrating crash concentrations and high-crash corridors for each area.

<table>
<thead>
<tr>
<th></th>
<th>All Crashes</th>
<th>Non-Motorized</th>
<th>Intersection</th>
<th>Lane Departure</th>
<th>Same Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Crashes</td>
<td>38,887</td>
<td>862</td>
<td>6,819</td>
<td>3,629</td>
<td>23,419</td>
</tr>
<tr>
<td>Injury Crashes</td>
<td>3,469</td>
<td>448</td>
<td>1,030</td>
<td>567</td>
<td>1,111</td>
</tr>
<tr>
<td>Total Injuries</td>
<td>4,719</td>
<td>470</td>
<td>1,621</td>
<td>747</td>
<td>1,492</td>
</tr>
<tr>
<td>Total Serious Injuries</td>
<td>928</td>
<td>136</td>
<td>326</td>
<td>201</td>
<td>187</td>
</tr>
<tr>
<td>Fatal Crashes</td>
<td>148</td>
<td>38</td>
<td>39</td>
<td>53</td>
<td>10</td>
</tr>
<tr>
<td>Total Fatalities</td>
<td>160</td>
<td>38</td>
<td>40</td>
<td>64</td>
<td>10</td>
</tr>
<tr>
<td>Severity Ratio</td>
<td>2.4%</td>
<td>15.8%</td>
<td>4.8%</td>
<td>5.2%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Percent of All Crashes</td>
<td>NA</td>
<td>2%</td>
<td>18%</td>
<td>10%</td>
<td>60%</td>
</tr>
<tr>
<td>Percent of Severe Injuries</td>
<td>NA</td>
<td>15%</td>
<td>35%</td>
<td>22%</td>
<td>20%</td>
</tr>
<tr>
<td>Percent of Fatalities</td>
<td>NA</td>
<td>24%</td>
<td>25%</td>
<td>40%</td>
<td>6%</td>
</tr>
</tbody>
</table>
In addition to the definition of Collier MPO County-specific emphasis areas, the following key conclusions help to formulate data-driven recommendations for reducing crashes, injuries, and fatalities in Collier County:

1. **Roadway Safety Relative to Florida**: Collier County has fewer crashes, traffic injuries, and traffic fatalities than Florida as a whole as a function of population and daily vehicle miles of travel (VMT).

2. **Major Roadway Focus**: As is common in many urbanized Florida communities, a significant majority of public road traffic crashes, including severe injury crashes, occur along elements of the County’s arterial and collector road network.

3. **Local Autonomy**: Because Collier County has a relatively sparse network of State highways and many County-maintained roadways that carry significant traffic volume, approximately 2/3 of crashes occur along County-maintained roadways. This means Collier County has substantial agency to self-manage safety outcomes on its roadway network.

4. **Driver Demographics**: Driver age data show that older road users do not disproportionately contribute to crashes in Collier County; however, inferential time-of-day data suggest that older drivers (age 55+) also have less exposure to nighttime and rush-hour driving.

5. **Moderate Enforcement**: Fewer traffic citations per capita and per vehicle mile of travel are issued in Collier County than in Florida as a whole and within a group of similarly sized coastal counties.

6. **High Severity Emphasis Areas**: Certain crash types contribute disproportionately to incapacitating injury and fatal crashes. Collectively, non-motorized road user, angle, left-turn, and lane departure crashes account for 30% of all crashes but result in 72% of severe injuries and 89% of fatalities.

7. **High Frequency Emphasis Area**: Though significantly less likely to result in severe injury than the crash types noted above, rear-end and sideswipe crashes result in a significant number of incapacitating injuries due to their frequency.

Based on the LRSP Emphasis Areas and the summary conclusions described above, infrastructure and non-infrastructure strategies have been identified. These are summarized in Table 1-2 and 1-3 and described in detail in Section 4.
Table 1-2: Infrastructure Strategies Matrix

<table>
<thead>
<tr>
<th>Infrastructure Strategies</th>
<th>Non-Motorized</th>
<th>Intersection</th>
<th>Lane Departure</th>
<th>Same Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative Intersections (ICE Process)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection Design Best Practices for Pedestrians</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Restrictions/Access Management</td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Right Turn Lanes</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Coordination</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural Road Strategies including:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Paved shoulder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Safety edge</td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>• Curve geometry, delineation, and warning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bridge/culvert widening/attenuation</td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>• Guardrail/ditch regrading/tree clearing</td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>• Isolated intersection conspicuity/geometry</td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Shared Use Pathways, Sidewalk Improvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-Block Crossings & Median Refuge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection Lighting Enhancements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomous Vehicles (Longer-Term)</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(= Applicable Strategy ? = Possible Contra-indications)

Table 1-3: Non-Infrastructure Strategies Matrix

<table>
<thead>
<tr>
<th>Non-Infrastructure Strategies</th>
<th>Lane Departure</th>
<th>Non-Motorized</th>
<th>Rear End/Sideswipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Enforcement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Targeted Speed Enforcement</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>• Red Light Running Enforcement</td>
<td>X</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>• Automated Enforcement</td>
<td>X</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>• Pedestrian Safety Enforcement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bike Light and Retroreflective Material Give-Away</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young Driver Education</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>WalkWise/BikeSmart or Similar Campaign</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuing Education</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Safety Issue Reporting</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vision Zero Policy</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Plan Organization

The Collier LRSP is divided into three main sections as follows:

- **Data and Analysis**: This section includes an analysis of the County’s traffic crash history, a comparison of Collier County traffic citation data with the State of Florida and with “peer” counties, and a discussion of the four emphasis areas described above. The Data and Analysis Section of the LRSP also includes “Key Conclusions” derived from the analysis of the County’s traffic crash and citation data.

- **Recommendations**: This section begins with a problem statement that builds from the “Key Conclusions” part of the Data and Analysis Section. Next Recommendations related to both infrastructure and non-infrastructure strategies are presented where “infrastructure” refers to public roadway design and operations and “non-infrastructure” refers to education/marketing, law enforcement, and other strategies.

- **Implementation Plan**: The LRSP Implementation Plan shows potential processes for addressing each of the infrastructure and non-infrastructure strategies identified in the Recommendations Section of the Report. Implementation measures are categorized by timeframe (short-term, longer-term) and by order of magnitude cost. The Implementation Plan also includes recommendations for evaluating and updating the Plan.

In addition to the three main report section, the LRSP also includes the following appendices:

- **Glossary of Technical Terms (Appendix 1)**: This is a glossary of technical terms used in the LRSP and is provided to make the document more legible for audiences that are not familiar with traffic engineering terms.

- **Traffic Crash Data Quality Control Technical Memorandum (Appendix 2)**: As part of the LRSP, a five year history of Collier County’s crash data was manually reviewed to ensure fatal and incapacitating injury crashes and non-motorized crashes were located correctly and that key data attributes were consistent with the crash report collision diagram and narrative. This appendix summarizes the methodology and findings of that process.

- **Community Survey Summary (Appendix 3)**: As part of the public outreach process for the LRSP, a web-based community survey was distributed to better understand the perception and attitudes of Collier County residents and workers with respect to traffic safety. The survey questions and findings are provided in this appendix.
SECTION 2: STATISTICAL ANALYSIS

Introduction and methodology

Introduction

A critical input into the Collier MPO Local Road Safety Plan (LRSP) is analysis of traffic crash data and other relevant quantitative data inputs. This Technical Memorandum section provides a description of the data analysis methodology and findings used to inform the Collier MPO LRSP. Key elements of this memorandum include the following:

- Analysis of countywide crash data distributions and comparison with statewide norms
- Analysis of traffic citation data for Collier County and comparisons with statewide citation data and citation data from peer counties
- Establishment of Collier County MPO-specific safety emphasis areas and identification of high-crash locations based on Safety Emphasis Areas
- Key Conclusions

Methodology

The Collier MPO LRSP uses traffic crash data from the Collier County Crash Data Management System (CDMS) for the years 2014 to 2018. As described in the LRSP Crash Data Quality Control Memorandum (Appendix 2), fatal, incapacitating injury, and bicycle/pedestrian crash reports were manually reviewed and key data fields were updated to ensure accuracy.

Next, crashes that occurred in parking lots and along private roads were removed from the data sample, and those that occurred along the county’s major roadway network were assigned ID numbers from the major roadway database. This was done using a spatial query in which crashes within 100 ft of a major roadway segment were assigned to that segment. Data from Collier County’s Annual Update and Inventory Report (AUIR) were then used to understand crash data distributions in the context of roadway system vehicle miles of travel (VMT), roadway characteristics, and other factors.

To evaluate traffic citations, data were collected from Florida Department of Highway Safety and Motor Vehicles (DHSMV) crash and citation reports and statistics web page. Data from Collier County, the State of Florida, and similar-size coastal counties were downloaded as Excel spreadsheets and compared.

A Glossary of Terms used in this Technical Memorandum section is provided as Appendix 1A. Appendix 3B provides an overview of a public outreach survey that was disseminated by the Collier Metropolitan Planning Organization (MPO) to help understand public perceptions of traffic safety in Collier County.

Crash Data analysis

This section of the LRSP Statistical Analysis Technical Memorandum summarizes the following traffic crash data distributions:

- Comparison of State and County Crash Rates
State of Florida Crash Rate Comparison

Using data from FLHSMV (for consistency) the average number of reported crashes, fatalities, and injuries from the State of Florida and Collier County are shown in Table 2-1. These crash totals are represented as crash rates as a function of millions of daily vehicle miles of travel (DVMT) and as a function of 100,000 persons. The data shows that Collier County has fewer crashes and traffic fatalities and injuries than the State of Florida in terms of both population and vehicle miles of travel.

Table 2-1: Comparison of Collier County and State of Florida Crash Rates

<table>
<thead>
<tr>
<th></th>
<th>Florida</th>
<th>Collier County</th>
<th>Collier vs. State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crashes</td>
<td>383,862</td>
<td>4,962</td>
<td>NA</td>
</tr>
<tr>
<td>Fatalities</td>
<td>2,972</td>
<td>38</td>
<td>NA</td>
</tr>
<tr>
<td>Injuries</td>
<td>242,709</td>
<td>2,829</td>
<td>NA</td>
</tr>
<tr>
<td>Daily VMT</td>
<td>582,491,060</td>
<td>9,939,709</td>
<td>228%</td>
</tr>
<tr>
<td>Crashes/m DVMT</td>
<td>659</td>
<td>499</td>
<td>76%</td>
</tr>
<tr>
<td>Fatalities/mDVMT</td>
<td>5.1</td>
<td>3.8</td>
<td>75%</td>
</tr>
<tr>
<td>Injuries/mDVMT</td>
<td>417</td>
<td>285</td>
<td>68%</td>
</tr>
<tr>
<td>Population</td>
<td>20,159,183</td>
<td>351,121</td>
<td>NA</td>
</tr>
<tr>
<td>Crashes/100k Pop.</td>
<td>1,904</td>
<td>1,413</td>
<td>74%</td>
</tr>
<tr>
<td>Fatalities/100k Pop.</td>
<td>15</td>
<td>11</td>
<td>73%</td>
</tr>
<tr>
<td>Injuries/100k Pop.</td>
<td>1,204</td>
<td>806</td>
<td>67%</td>
</tr>
</tbody>
</table>

Crash Distribution by Roadway Functional Class

Using the location data for each traffic crash report and a GIS layer representing Collier County’s major road network (arterial and collector roads), all Collier County crashes for 2014–2018 were either assigned to a major roadway segment or classified as a local roadway crash. Figure 2-1 shows the distribution of all crashes and severe crashes in Collier County. Approximately 3/4 of crashes occurred along the County’s major signalized arterial and collector road network, with fewer than 10% occurring along I-75 and fewer than 20% occurring along local streets.
Collier County MPO | Local Road Safety Plan

To put this data into context, Table 2-2 shows how automobile traffic is distributed across Collier County’s roadway network as compared with roadways statewide. The table shows that proportionally fewer vehicle miles of travel (VMT) in Collier County is handled by limited access highways (interstate, turnpike, etc.) while a greater share of VMT is handled by arterial roads and major collector roadways. These types of roadways tend to have a higher number of reported crashes per VMT than limited access highways or lower-speed minor collectors and local roads.

Table 2-2: VMT Distribution of Collier County and Florida by Functional Classification

<table>
<thead>
<tr>
<th>Roadway Functional Classification</th>
<th>Florida</th>
<th>Collier</th>
<th>Crash Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate, Turnpike & Freeways</td>
<td>26%</td>
<td>21%</td>
<td>Limited Access, Low Crashes/VMT</td>
</tr>
<tr>
<td>Other Principle Arterials</td>
<td>25%</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>Minor Arterials</td>
<td>15%</td>
<td>29%</td>
<td>Higher Speed, More Conflict Points</td>
</tr>
<tr>
<td>Major Collectors</td>
<td>11%</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>Minor Collectors</td>
<td>2%</td>
<td>2%</td>
<td>Lower Speed, Less Severe Crashes</td>
</tr>
<tr>
<td>Locals</td>
<td>21%</td>
<td>18%</td>
<td></td>
</tr>
</tbody>
</table>

Crash Distribution of Major Roadway Crashes by Maintenance Authority

To understand how Collier County, the Florida Department of Transportation (FDOT), and the cities of Naples and Marco Island each contribute to managing safety along the county’s road network, it is useful to look at how crashes are distributed based on roadway ownership/maintenance responsibility. Figure 2-2 shows the distribution of all crashes, severe crashes, and vehicle miles of travel along the county’s major roadway network excluding I-75.

The percentage of all crashes and severe crashes is more or less proportional to each maintenance jurisdictions’ overall VMT, with a slightly higher proportion of severe crashes occurring along State roads compared with County-maintained roads. In more metropolitan areas of Florida, there is a
denser grid of State-maintained arterial roads than in Collier County. Accordingly, up to half of VMT and half of all crashes in those jurisdictions occur on the State Highway System (SHS). In Collier County, County-maintained major roadways that look and function like State highways carry a greater share of the load and therefore account for a more significant proportion of crashes.

Figure 2-2: Crash Distribution by Major Roadway Maintenance Authority

Crash Distribution of Major Roadway Number of Lanes

Another way to understand Collier County’s crash history, especially when comparing concentrations of severe crashes, is to look at the distribution of crashes by the number of roadway lanes along the major roadway network (excluding I-75). Referring to the inner ring of Figure 2-3, roadways with six or more lanes account for half of arterial and collector roadway VMT and overall crashes but only 38% of severe crashes. Conversely, two-lane roadways account for 31% of VMT but 41% of severe crashes.

Figure 2-3: Crash Distribution by Major Roadway Number of Lanes
Crash Distribution by Area Type

The proportion of all crashes, severe crashes, and VMT was also compared for the western, more urban part of the county and the eastern, more rural part of the county using CR-951/Collier Boulevard as an approximate meridian. Including travel on I-75, approximately 60% of all VMT occurs on major roadways to the west of and including CR-951, and these roadways account for nearly 3/4 of all crashes and about 57% of severe crashes.

Roadways in the eastern, more rural part of the county account for proportionally fewer crashes overall but a somewhat higher proportion of severe crashes compared with VMT. These data, combined with the prior analysis of crash severity by number of lanes, indicate a potential issue with rural highway safety, including a potential for single-vehicle (lane departure) crashes.

Crash Distribution by Lighting Condition

In addition to the roadway characteristics of the county’s crash history, it is also helpful to understand key environmental conditions. One of the most useful of these is the lighting conditions in which crashes occurred. Because crash report coding of lighting condition does not always reflect whether nighttime lighting is functionally adequate (i.e., meets applicable AASHTO or FDOT standards), it is better to focus on whether crashes occurred during daylight or non-daylight conditions as a primary indicator while considering the specific non-daylight conditions as a secondary measure.

The chart on the left of Figure 2-5 compares the observed lighting condition of all crashes and severe crashes, and the chart on the right shows a comparison of all non-motorized crashes, severe non-motorized crashes and all crashes. The overall percentage of non-daylight crashes (22%) is about typical for Florida (25%). These data also show that severe crashes are more likely to occur outside of daylight hours for both motorized and non-motorized crashes.
The preponderance of severe non-motorized crashes during non-daylight hours is also a common finding statewide and nationally and reflects the fact that driver ability to observe, react, and respond to non-motorized users in the roadway is drastically diminished at night due to the frequent lack of adequate running lights on bicycles or use of retroreflective clothing by cyclists and pedestrians.

[Figure 2-5: Lighting Conditions]

Crash Type Distribution

A critical way of looking at Collier County’s crash history is to understand what types of crashes occur most frequently and what types result in the most incapacitating injuries and fatalities. Reference source not found. Figure 2-6 shows all crashes ranked by crash type and the percentage of severe crashes for each. These data show that rear-end crashes are the most common overall crash type (nearly 50%) and result in the highest overall number of severe crashes, but the relative severity of rear-end crashes is lower than many other crash types.
Figure 2-6: Crash Type Distribution

Table 2-3 shows crash type and severity data shown in Figure 2-7 presented as a two-by-two matrix. The top left quadrant represents crash types that have a high severity ratio (account for a greater percentage of severe crashes than overall crashes) and also a high absolute number of severe crashes (account for more than 5% of all severe crashes). This quadrant is the most important strategically since eliminating a relatively small percentage of overall crashes can have a relatively large effect in reducing life-altering injuries and fatalities.

Table 2-3: Crash Type and Severity Matrix

<table>
<thead>
<tr>
<th>High Severity Ratio</th>
<th>Low Severity Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike</td>
<td>Rear-End</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>Unknown/Other</td>
</tr>
<tr>
<td>Left-Turn</td>
<td>Head-On</td>
</tr>
<tr>
<td>Angle</td>
<td>Single Vehicle</td>
</tr>
<tr>
<td>Hit Fixed Object</td>
<td>Sideswipe</td>
</tr>
<tr>
<td>Hit Non-Fixed Object</td>
<td>Right-Turn</td>
</tr>
<tr>
<td>Single Vehicle</td>
<td>Run Off Road</td>
</tr>
<tr>
<td>U-Turn</td>
<td></td>
</tr>
<tr>
<td>Run Off Road</td>
<td></td>
</tr>
</tbody>
</table>

Driver Age

In addition to understanding where and how crashes occur in Collier County, it is also useful to consider demographic information about the people involved in crashes. Figure 2-7 shows the relative contribution of different age drivers to crashes countywide and also shows the extent to which each age bracket contributes to the County’s overall population. These data indicate that young drivers are more likely to be cited as “at fault” in crashes both in absolute terms and in proportion to their representation in the County’s population.
Although it is common to find that younger drivers are at a greater risk of being involved in a crash, it is unusual to find that middle-age adult drivers are over-represented compared to older drivers. To understand these data better, crash time-of-day data were compared to at-fault driver age for drivers ages 54 and younger and 55 and up. Figure 2-7 confirms that some of the difference between older and younger driver risk is related to time of day.

Across all time periods, drivers age 54 and younger account for 70% of all crashes, and drivers age 55 and older account for the remaining 30% of all crashes. Accordingly, the younger age group is over-represented in late-night crashes and also during morning and afternoon rush hours and in the evening. Conversely, older drivers very rarely are at fault in late-night crashes but are over-represented during the midday period.

Although not definitive proof, these data imply that part of the lower risks attributed to older drivers is that they are less likely to drive at night and may also avoid driving during the most congested times of day.
Figure 2-8: Crash Distribution for Age 54 and Younger vs. Age 55 and Older

Temporal Trends

Figure 2-9 shows annual crash frequencies for crashes in Collier County for 2014–2018. Reported crashes ranged from a low of approximately 7,600 crashes in 2014 to a high of nearly 9,000 crashes in 2016. Nominally, the trend in crash frequency is increasing by about 130 crashes per year; however, the year-over-year data are somewhat erratic, resulting in a low R2 value of about 0.20.

Figure 2-9: Crash Trend, 2014–2018

Figure 2-10 shows average monthly crash frequencies Collier County for 2014–2018. Over this period, there was an average of approximately 700 reported crashes per month, with a monthly distribution that generally reflects the overall seasonal traffic patterns exhibited in Collier County.
Traffic Citation Analysis

Traffic citation data are another lens through which to analyze traffic safety in Collier County. For the LRSP, citation data for 2014–2018 were obtained from the Florida Department of Highway Safety and Motor Vehicles (DHSMV) for Collier County, the State of Florida, and several “peer” counties.

Figure 2-6 shows the most common moving violations recorded in Collier County. “Exceeding the Posted Speed” (speeding) accounts for more than half of all moving violations, followed by “Disregard Traffic Control Device” (e.g., ran stop sign or yield sign) and “Disregard Traffic Signal” (ran red light).
Figure 2-7 shows the distribution of traffic citations by issuing agency for Collier County. These data indicate that the Collier County Sheriff’s Office accounts for about 45% of all traffic citations, followed by the Florida Highway Patrol at 39%. Naples and Marco Island collectively issue about 15% of the citations countywide.

Table 2-4 compares traffic citation activity in Collier County with similarly sized coastal Florida counties and Florida overall. These data suggest that Collier County law enforcement agencies issue fewer citations on average than the State of Florida and most peer counties in terms of both citations per capita and citations per vehicle miles of travel.

<table>
<thead>
<tr>
<th>State and County</th>
<th>Violations (2014–18)</th>
<th>Total VMT (2014–18)</th>
<th>Citations per 100K VMT</th>
<th>Population</th>
<th>Citations per 100K Pop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>1,978,741</td>
<td>562,491,060</td>
<td>340</td>
<td>20,159,183</td>
<td>9,816</td>
</tr>
<tr>
<td>Collier</td>
<td>22,136</td>
<td>9,939,709</td>
<td>223</td>
<td>351,121</td>
<td>6,304</td>
</tr>
<tr>
<td>Brevard</td>
<td>29,592</td>
<td>17,784,554</td>
<td>166</td>
<td>568,367</td>
<td>5,208</td>
</tr>
<tr>
<td>Escambia</td>
<td>24,176</td>
<td>9,657,445</td>
<td>250</td>
<td>310,556</td>
<td>7,785</td>
</tr>
<tr>
<td>Lee</td>
<td>83,614</td>
<td>20,667,894</td>
<td>405</td>
<td>682,448</td>
<td>12,252</td>
</tr>
<tr>
<td>Manatee</td>
<td>23,208</td>
<td>10,038,803</td>
<td>231</td>
<td>358,616</td>
<td>6,472</td>
</tr>
<tr>
<td>Sarasota</td>
<td>33,880</td>
<td>12,052,890</td>
<td>281</td>
<td>400,694</td>
<td>8,455</td>
</tr>
</tbody>
</table>

Table 2-5 shows the types of criminal, non-criminal (moving), and non-moving traffic violations in Collier County compared with Florida. Generally, high-frequency citation types in Collier County align with those issued statewide; however, the following exceptions are noteworthy:

- Collier County issues a lower percentage of citations for driving with a suspended or revoked driver’s license. This may be due, in part, to the relative affluence of Collier County compared with Florida.
- Collier County does not have a substantial number of red-light running camera violations. These account for approximately 15% of moving violations statewide.
Based on the data analysis described, four key Collier County MPO LRSP emphasis areas were identified for further analysis and identification of high-crash corridors. The following crash types were identified as having a high severity ratio (constituting a greater percentage of severe crashes than all crashes) and accounting for a high overall number of severe crashes (more than 5% of total severe crashes):

- Bicycle
- Pedestrian
- Left-turn
- Angle
- Hit fixed object

Additionally, rear-end, single vehicle, head-on, and run-off-road crash types either account for a high frequency of severe crashes or have a high severity ratio. Based on similar characteristics and countermeasure profiles, these crash types can be combined to form the following Emphasis Areas:

Table 2-4: Traffic Citations (State Totals vs. Collier County) Collier LRSP Emphasis Areas

<table>
<thead>
<tr>
<th>COLLIER COUNTY</th>
<th>STATE TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraction</td>
<td>Average Annual Citations</td>
</tr>
<tr>
<td>DR/DL/Sus/RV</td>
<td>1,287</td>
</tr>
<tr>
<td>No/Imp/Expired Driver’s License</td>
<td>1,243</td>
</tr>
<tr>
<td>DUI</td>
<td>1,173</td>
</tr>
<tr>
<td>Other Crime</td>
<td>349</td>
</tr>
<tr>
<td>No/Imp/Exp. Tag</td>
<td>240</td>
</tr>
<tr>
<td>All Other (<5%)</td>
<td>400</td>
</tr>
</tbody>
</table>

Based on the data analysis described, four key Collier County MPO LRSP emphasis areas were identified for further analysis and identification of high-crash corridors. The following crash types were identified as having a high severity ratio (constituting a greater percentage of severe crashes than all crashes) and accounting for a high overall number of severe crashes (more than 5% of total severe crashes):

- Bicycle
- Pedestrian
- Left-turn
- Angle
- Hit fixed object

Additionally, rear-end, single vehicle, head-on, and run-off-road crash types either account for a high frequency of severe crashes or have a high severity ratio. Based on similar characteristics and countermeasure profiles, these crash types can be combined to form the following Emphasis Areas:

Commented [M1]: 23% for Collier compared to 11% statewide, should we be concerned or is this just a factor of the type of citations? Question to Tindale Oliver still not answered as of 3/8/21.
1. Non-Motorized (Bicycle and Pedestrian Crashes)
2. Intersection (Left-Turn and Angle Crashes)
3. Lane Departure (Hit Fixed Object, Single Vehicle, Head-On, and Run-Off-Road Crashes)
4. Same Direction (Rear-End and Sideswipe Crashes)
5. **DUI?**

Commented [M2]: Response still pending. As of 3/8/21
Table 2-65 is a summary of Emphasis Area crash statistics excluding private roads and interstate highways. Each emphasis area is discussed further in this section, including a summary of high-crash corridors and a “heat map” showing crash concentrations for each emphasis areas. Because much of Collier County is undeveloped, the maps focus on the western, urban part of the county and the area around Immokalee and Marco Island.

Table 2-5: Emphasis Area Summary

<table>
<thead>
<tr>
<th></th>
<th>All Crashes</th>
<th>Non-Motorized</th>
<th>Intersection</th>
<th>Lane Departure</th>
<th>Same Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Crashes</td>
<td>38,887</td>
<td>862</td>
<td>6,819</td>
<td>3,829</td>
<td>23,419</td>
</tr>
<tr>
<td>Injury Crashes</td>
<td>3,469</td>
<td>448</td>
<td>1,030</td>
<td>567</td>
<td>1,111</td>
</tr>
<tr>
<td>Total Injuries</td>
<td>4,719</td>
<td>470</td>
<td>1,621</td>
<td>747</td>
<td>1,492</td>
</tr>
<tr>
<td>Total Serious Injuries</td>
<td>928</td>
<td>136</td>
<td>326</td>
<td>201</td>
<td>187</td>
</tr>
<tr>
<td>Fatal Crashes</td>
<td>148</td>
<td>38</td>
<td>39</td>
<td>53</td>
<td>10</td>
</tr>
<tr>
<td>Total Fatalities</td>
<td>160</td>
<td>38</td>
<td>40</td>
<td>64</td>
<td>10</td>
</tr>
<tr>
<td>Severity Ratio</td>
<td>2.4%</td>
<td>15.8%</td>
<td>4.8%</td>
<td>5.2%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Percent of All Crashes</td>
<td>NA</td>
<td>2%</td>
<td>18%</td>
<td>10%</td>
<td>60%</td>
</tr>
<tr>
<td>Percent of Severe Injuries</td>
<td>NA</td>
<td>15%</td>
<td>35%</td>
<td>22%</td>
<td>20%</td>
</tr>
<tr>
<td>Percent of Fatalities</td>
<td>NA</td>
<td>24%</td>
<td>25%</td>
<td>40%</td>
<td>6%</td>
</tr>
</tbody>
</table>
Emphasis Area 1: Non-Motorized Crashes

Non-motorized crashes (crashes in which a pedestrian or bicyclist are involved) are a statewide Emphasis Area and an important component of traffic safety challenges in Collier County. These crashes account for only 2% of all reported crashes in Collier County but constitute 15% of the county's severe injury crashes and 24% of the county's crash fatalities.
Table 2-6 shows a list of major roadway corridors with the most non-motorized crashes, and Figure 2-8 is a “heat map” of non-motorized user crashes. Consistent with prior Collier MPO bicycle/pedestrian safety analyses, key focus areas include the area defined by US-41 (Tamiami Trail), Airport Road, and Davis Boulevard and SR-29 through Immokalee. Other critical corridors are listed in Table 2-7 and highlighted in Figure 2-9.
<table>
<thead>
<tr>
<th>On Street</th>
<th>From Street</th>
<th>To Street</th>
<th>Crashes</th>
<th>Fatal Crashes</th>
<th>Incap. Injury Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport Rd</td>
<td>US-41 (Tamiami Trail)</td>
<td>Davis Blvd</td>
<td>11</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Tamiami Trail E</td>
<td>Davis Blvd</td>
<td>Airport Rd</td>
<td>24</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tamiami Trail N</td>
<td>Vanderbilt Beach Rd</td>
<td>Immokalee Rd</td>
<td>22</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SR 29</td>
<td>1st St</td>
<td>9th St</td>
<td>21</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Bayshore Dr</td>
<td>Thomasson Dr</td>
<td>US-41 (Tamiami Trail)</td>
<td>20</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Radio Rd</td>
<td>Livingston Rd</td>
<td>Santa Barbara Blvd</td>
<td>20</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SR 29</td>
<td>9th St</td>
<td>Immokalee Dr</td>
<td>19</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Tamiami Trail E</td>
<td>Airport Rd</td>
<td>Rattlesnake Hammock Rd</td>
<td>19</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Collier Blvd</td>
<td>Vanderbilt Beach Rd</td>
<td>Immokalee Rd</td>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lake Trafford Rd</td>
<td>Carson Rd</td>
<td>SR-29</td>
<td>16</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Immokalee Rd</td>
<td>Stockade Rd</td>
<td>SR-29</td>
<td>15</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Davis Blvd</td>
<td>Lakewood Blvd</td>
<td>County Barn Rd</td>
<td>14</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SR-29</td>
<td>Immokalee Dr</td>
<td>CR-29A North</td>
<td>14</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Airport Rd</td>
<td>Davis Blvd</td>
<td>North Rd</td>
<td>13</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Airport Rd</td>
<td>Radio Rd</td>
<td>Golden Gate Pkwy</td>
<td>13</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 2-8: Non-Motorized Crash Heat Map

Collier County Local Road Safety Plan (LRSP) Bicycle / Pedestrian Crashes 2014-2018

Road / Pedestrian Crash Density

High

Low

Figure 3-15: Non-Motorized Crash Heat Map
Emphasis Area 2: Intersection Crashes (Angle and Left-Turn)

Angle and left-turn crashes involve either two motor vehicles traveling at roughly perpendicular directions or a motor vehicle making a left turn across the path of an oncoming vehicle. Because these crashes are often extremely violent, high-energy events, they are more likely to result in incapacitating or fatal injuries than crashes in which vehicles are traveling in the same direction. These crashes account for only 18% of all crashes but 35% of severe injuries and 25% of fatalities.

Table 2-8 shows a list of major roadway corridors with the most angle and left turn crashes based on the data mapped in Figure 2-9. Many of the high-crash corridors include one or more high-volume arterial intersections; however, some corridors, including Golden Gate Parkway (Santa Barbara Blvd. to Collier Blvd.) include crash concentrations associated with lower-volume intersections.

<table>
<thead>
<tr>
<th>On Street</th>
<th>From Street</th>
<th>To Street</th>
<th>Crashes</th>
<th>Fatal Crashes</th>
<th>Incap. Injury Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden Gate Pkwy</td>
<td>Santa Barbara Blvd</td>
<td>Collier Blvd</td>
<td>190</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Tamiami Trail N</td>
<td>SR-84 (Davis Blvd)</td>
<td>CR-851 (Goodlette Rd S)</td>
<td>136</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Collier Blvd</td>
<td>Golden Gate Pkwy</td>
<td>Green Blvd</td>
<td>111</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Tamiami Trail N</td>
<td>12th Ave</td>
<td>Park Shore Dr/ Cypress Woods Dr</td>
<td>106</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Goodlette-Frank Rd</td>
<td>US-41 (Tamiami Trail)</td>
<td>Golden Gate Pkwy</td>
<td>87</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Tamiami Trail N</td>
<td>Park Shore Dr/ Cypress Woods Dr</td>
<td>Pine Ridge Rd/ Seagate Dr</td>
<td>84</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Santa Barbara Blvd</td>
<td>Golden Gate Pkwy</td>
<td>Green Blvd</td>
<td>82</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Airport Rd</td>
<td>Radio Rd</td>
<td>Golden Gate Pkwy</td>
<td>81</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Airport Rd</td>
<td>Pine Ridge Rd</td>
<td>Orange Blossom Dr</td>
<td>74</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Goodlette-Frank Rd</td>
<td>Golden Gate Pkwy</td>
<td>Pine Ridge Rd</td>
<td>74</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Pine Ridge Rd</td>
<td>Airport Rd</td>
<td>Livingston Rd</td>
<td>73</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Collier Blvd</td>
<td>Vanderbilt Beach Rd</td>
<td>Immokalee Rd</td>
<td>67</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SR-29</td>
<td>9th St</td>
<td>Immokalee Dr</td>
<td>67</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Tamiami Trail N</td>
<td>Pine Ridge Rd/ Seagate Dr</td>
<td>Gulf Park Dr</td>
<td>65</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Tamiami Trail E</td>
<td>Airport Rd</td>
<td>Rattlesnake Hammock Rd</td>
<td>63</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 2-9: Angle and Left Turn Crash Heat Map
Emphasis Area 3: Lane Departure

Lane departure crashes, referred to as “run-off-road” crashes, include crash types in which a single vehicle leaves the roadway and either strikes a fixed object or otherwise crashes. Head-on crashes, though rare events, are included in this Emphasis Area as they are precipitated by similar circumstances. Because these types of crashes often involve vehicles traveling at high speeds, they are more likely to have severe outcomes. In Collier County, roadway departure crashes account for only 10% of overall crashes but are responsible for 22% of severe injuries and 40% of fatalities.

Table 2-8 shows a list of major roadway corridors with the most lane departure crashes and Figure 2-10 shows a “heat map” of non-motorized user crashes. While more lane departure crashes occur in the along busier roadways west of and including Collier Boulevard, approximately 40% of these crashes occur along rural highways and local roadways in the eastern part of Collier County.

Table 2-8: Lane Departure High Crash Corridors

<table>
<thead>
<tr>
<th>On Street</th>
<th>From Street</th>
<th>To Street</th>
<th>Crashes</th>
<th>Fatal Crashes</th>
<th>Incap. Injury Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immokalee Rd</td>
<td>Collier Blvd</td>
<td>Wilson Blvd</td>
<td>51</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Immokalee Rd</td>
<td>Oil Well Rd</td>
<td>Stockade Rd</td>
<td>45</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Golden Gate Blvd</td>
<td>Collier Blvd</td>
<td>Wilson Blvd</td>
<td>43</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Airport Rd</td>
<td>Radio Rd</td>
<td>Golden Gate Pkwy</td>
<td>39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Airport Rd</td>
<td>Pine Ridge Rd</td>
<td>Orange Blossom Drive</td>
<td>35</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Goodlette-Frank Rd</td>
<td>US-41 (Tamiami Trail)</td>
<td>Golden Gate Pkwy</td>
<td>35</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Collier Blvd</td>
<td>Vanderbilt Beach Rd</td>
<td>Immokalee Rd</td>
<td>33</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Tamiami Trail N</td>
<td>12th Ave</td>
<td>Park Shore Dr/</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tamiami Trail N</td>
<td>Prime Hwy-84 (Davis Blvd)</td>
<td>CR-851 (Goodlette Rd S)</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Collier Blvd</td>
<td>US-41 (Tamiami Trail)</td>
<td>Rattlesnake Hammock Rd</td>
<td>32</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Collier Blvd</td>
<td>Rattlesnake Hammock Rd</td>
<td>Davis Blvd</td>
<td>31</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Collier Blvd</td>
<td>Mainsail Drive</td>
<td>Manatee Rd</td>
<td>29</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tamiami Trail E</td>
<td>Rattlesnake Hammock Rd</td>
<td>Treetops Dr</td>
<td>29</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Vanderbilt Beach Rd</td>
<td>Logan Blvd</td>
<td>Collier Blvd</td>
<td>28</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pine Ridge Rd</td>
<td>Airport Rd</td>
<td>Livingston Rd</td>
<td>28</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 2-10: Lane Departure Crash Heat Map
Emphasis Area 4: Same Direction (Rear-End and Sideswipe) Crashes

Rear-end and sideswipe crashes are much less likely to result in incapacitating or fatal injuries than crash types included in the other three emphasis areas; however, these crashes are the most common type of crash to occur and contribute to injuries and deaths as a function of their frequency.

Table 2-9 shows a list of major roadway corridors with the most non-motorized crashes and Figure 2-11 shows a “heat map” of non-motorized user crashes. Consistent with prior Collier MPO Bicycle/Pedestrian safety analyses, key focus areas include the area defined by US 41 (Tamiami Trail), Airport Road, and Davis Boulevard and SR 29 through the town of Immokalee.

Table 2-9: Same Direction High Crash Corridors

<table>
<thead>
<tr>
<th>On Street</th>
<th>From Street</th>
<th>To Street</th>
<th>Fatal Crashes</th>
<th>Incap. Injury Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden Gate Parkway</td>
<td>Santa Barbara Boulevard</td>
<td>Collier Boulevard</td>
<td>190</td>
<td>0</td>
</tr>
<tr>
<td>Tamiami Trail North</td>
<td>SR 84 (Davis Blvd)</td>
<td>CR 851 (Goodlette Rd South)</td>
<td>136</td>
<td>0</td>
</tr>
<tr>
<td>Collier Boulevard</td>
<td>Golden Gate Parkway</td>
<td>Green Boulevard</td>
<td>111</td>
<td>1</td>
</tr>
<tr>
<td>Tamiami Trail North</td>
<td>12th Ave</td>
<td>Park Shore Dr / Cypress Woods Dr</td>
<td>106</td>
<td>0</td>
</tr>
<tr>
<td>Goodlette-Frank Road</td>
<td>US 41 (Tamiami Trail)</td>
<td>Golden Gate Parkway</td>
<td>87</td>
<td>0</td>
</tr>
<tr>
<td>Tamiami Trail North</td>
<td>Park Shore Dr / Cypress Woods Dr</td>
<td>Pine Ridge Rd / Seagate Dr</td>
<td>84</td>
<td>1</td>
</tr>
<tr>
<td>Santa Barbara Boulevard</td>
<td>Golden Gate Parkway</td>
<td>Green Boulevard</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>Airport Road</td>
<td>Radio Road</td>
<td>Golden Gate Parkway</td>
<td>81</td>
<td>1</td>
</tr>
<tr>
<td>Airport Road</td>
<td>Pine Ridge Road</td>
<td>Orange Blossom Drive</td>
<td>74</td>
<td>2</td>
</tr>
<tr>
<td>Goodlette-Frank Road</td>
<td>Golden Gate Parkway</td>
<td>Pine Ridge Road</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>Pine Ridge Road</td>
<td>Airport Road</td>
<td>Livingston Road</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>Collier Boulevard</td>
<td>Vanderbilt Beach Road</td>
<td>Immokalee Road</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>SR 29</td>
<td>9th Street</td>
<td>Immokalee Dr</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>Tamiami Trail North</td>
<td>Pine Ridge Rd / Seagate Dr</td>
<td>Gulf Park Drive</td>
<td>65</td>
<td>1</td>
</tr>
<tr>
<td>Tamiami Trail East</td>
<td>Airport Road</td>
<td>Rattlesnake Hammock Road</td>
<td>63</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 2-11: Same Direction Crash Heat Map
Key Conclusions

Based on the data analysis summarized above, the following key conclusions are evident:

- Collier County has fewer crashes, traffic injuries, and traffic fatalities than Florida as a whole as a function of population and daily VMT.

- As is common in many urbanized Florida communities, a significant majority of public road traffic crashes, including severe injury crashes, occurs along elements of the County's arterial and collector road network.

- Because Collier County has a relatively sparse network of State highways and many County-maintained roadways that carry significant traffic volume, approximately 2/3 of crashes occur along County-maintained roadways. This means Collier County has substantial agency to self-manage safety outcomes on its roadway network.

- Driver age data show that older road users do not disproportionately contribute to crashes in Collier County; however, inferential time-of-day data suggest that older drivers (age 55+) also have less exposure to nighttime and rush-hour driving.

- Tindale Oliver noted that fewer traffic citations per capita and per vehicle mile of travel are issued in Collier County than in Florida and within a group of similarly-sized coastal counties. The County Sheriff’s Office responded that “This may be misleading in substance. Viewing Table 2-3 on P. 2-11, the number of citations are not critically lower on a statistical level than Manatee, Brevard, Escambia, and Sarasota Counties. Further, these numbers only count citations. They do not count the overall number of traffic stops and warnings issued. As noted in a footnote below Table 2-3, Collier County does not have red light cameras that cause number variations in other Florida jurisdictions; red light cameras issuing a 100% citation rate for identified violators. Beyond that, Conclusion #5 listed 2 paragraphs below this sentence articulates the significant impact municipalities have on citation statistics and the small municipalities in Collier County.

Of note as well is that Manatee, Brevard, Escambia, Lee, and Sarasota Counties all have Florida Highway Patrol (FHP) Troop stations located within their county boundaries. FHP can be relied upon for issuing a notable number of citations from their Troopers. Collier County no longer has a Troop Station located in its boundaries; it was removed years ago. Collier County relies upon the Lee County Troop Station to supply Troopers to Collier County which can cause staffing anomalies in the county as the local Troopers must travel to north of RSW for administrative functions.”

- Certain crash types contribute disproportionately to incapacitating injury and fatal crashes. Collectively, non-motorized road user, angle, left-turn, and lane departure crashes account for 30% of all crashes but result in 72% of severe injuries and 89% of fatalities.

- Though significantly less likely to result in severe injury than the crash types discussed above, rear-end and sideswipe crashes result in a significant number of incapacitating injuries due to their frequency.

- High crash corridors identified in the LRSP can be flagged for consideration of safety mitigation measures in association with other roadway improvements.
SECTION 3: RECOMMENDATIONS

Introduction and Problem Statement

Based on the data analysis documented in the Collier Local Road Safety Plan (LSRP) preceding section on Data Analysis Chapter, the following key conclusions help to formulate data-driven recommendations for reducing crashes, injuries, and fatalities in Collier County:

1. **Roadway Safety Relative to Florida**: Collier County has fewer crashes, traffic injuries, and traffic fatalities than Florida as a whole as a function of population and daily vehicle miles of travel (VMT).

2. **Major Roadway Focus**: As is common in many urbanized Florida communities, a significant majority of public road traffic crashes, including severe injury crashes, occur along elements of the county's arterial and collector road network.

3. **Local Autonomy**: Because Collier County has a relatively sparse network of State highways and many County-maintained roadways that carry significant traffic volume, approximately 2/3 of crashes occur along County-maintained roadways. This means Collier County has substantial agency to self-manage safety outcomes on its roadway network.

4. **Driver Demographics**: Driver age data show that older road users do not disproportionately contribute to crashes in Collier County; however, inferential time-of-day data suggest that older drivers (age 55+) also have less exposure to nighttime and rush-hour driving.

5. **Moderate Enforcement**: Fewer traffic citations per capita and per vehicle mile of travel are issued in Collier County than in Florida as a whole and within a group of similarly-sized coastal counties.

6. **High Severity Emphasis Areas**: Certain crash types contribute disproportionately to incapacitating injury and fatal crashes. Collectively, non-motorized road user, angle, left-turn, and lane departure crashes account for 30% of all crashes but result in 72% of severe injuries and 89% of fatalities.

7. **High Frequency Emphasis Area**: Though significantly less likely to result in severe injury than the crash types noted above, rear-end and sideswipe crashes result in a significant number of incapacitating injuries due to their frequency.

8. **High Crash Corridors and Intersections**: Identified in the LRSP can be flagged for integration of safety mitigation measures in association with other roadway improvements.
Each of these conclusions is considered below to begin formulating recommended strategies.

Conclusions #1 and 4: Roadway Safety Relative to Florida and Driver Demographics

Data from 2014–2018 indicate that Collier County experiences approximately 25% fewer traffic crashes and fatalities than Florida as a whole when normalized for both population and VMT. Understanding factors that contribute to this can help to build on Collier County’s existing strengths. Some potential explanations for Collier County’s relatively low rate of traffic crashes and fatalities compared with Florida as a whole include the following:

Demographics: Collier County has a lower proportion of younger drivers than Florida as a whole. Statewide, approximately 18.4% of the population is ages 15–29, whereas in Collier
County only 14.4% of the population falls within this age range. Less experienced drivers are more likely to be involved in crashes than older drivers, so a community with proportionately fewer younger drivers should exhibit fewer crashes per capita than average. When statewide crash rates for each age bracket are applied to Collier County's population, the expected number of crashes in Collier County is approximately 90% of statewide figures. Accordingly, driver demographics may explain part of the reason why Collier County has fewer crashes per capita and per VMT than Florida overall.

- **Roadway Characteristics:** Compared with Florida as a whole, Collier County has a similar proportion of VMT on relatively safe roadway types such as limited access highway, minor collector streets, and local roads but carries substantially less VMT on signalized principal arterials and, instead, handles more traffic with its minor arterial network. [See Appendix XXX or insert on next page: Federal Functional Classification Map.] Although both principal arterials and minor arterials are focused on longer-distance mobility, minor arterials tend to be more compact and generally operate at somewhat lower ambient speeds. Although difficult to quantify, this may, in part, contribute to Collier County's superior safety performance compared with Florida as a whole.

- **Land Use and Network Characteristics:** With some exceptions, commercial land uses in Collier County tend to be organized around major intersection nodes rather than along thoroughfare roadways. This means that between major intersections, access points are limited, resulting in fewer potential conflicts.

As Collier County continues to grow, it is reasonable to expect its demographic profile will "regress to the mean," resulting in a more normal proportion of young drivers and associated increase in crashes. Strategies to improve driver training and education for younger drivers and services to provide mobility for older road users are discussed in Section 3. Strategies to further enhance safety on the county's major roadway network and maintain good access controls are discussed in Section 2.

Conclusions #2 and #3: Major Roadway Focus and Local Autonomy

Because a majority of crashes in Collier County occur along County-maintained minor arterial and collector roadways, Collier County, in conjunction with the Collier MPO, has the ability to be proactive in making roadway safety infrastructure investments while continuing to coordinate with the Florida Department of Transportation (FDOT) to enhance safety on I-75 and major state highways such as US-41 and SR-29, Davis Boulevard, and State-maintained sections of Collier Boulevard.

Specific strategies applicable to the county's roadway network are discussed in Section 2.

Conclusion #5: Moderate Enforcement Efforts

Statewide, more than half of Floridians live in municipalities, and just over half of all traffic citations are issued by City police departments, with the remainder split roughly 60/40 between County Sheriffs and the Florida Highway Patrol. Because the municipalities in Collier County account for only about 10% of the county's population, the role of City police departments in traffic enforcement is less prevalent in Collier County, with approximately 15% of citations being issued by municipal police. Section 3 addresses strategies to target and enhance traffic enforcement where appropriate.
municipalities, and just over half of all traffic citations are issued by City police departments, with the remainder split roughly 60/40 between County Sheriffs and the Florida Highway Patrol. Because the municipalities in Collier County account for only about 10% of the county’s population, the role of City police departments in traffic enforcement is less prevalent in Collier County, with approximately 15% of citations being issued by municipal police. Section 3 addresses strategies to target and enhance traffic enforcement where appropriate."
Conclusions #6 and 7: High Severity Ratio and High Frequency Crash Emphasis Areas

Because specific crash types are more likely to result in incapacitating injury or death, it is logical that these should be the focus of both infrastructure and non-infrastructure strategies to enhance traffic safety in Collier County. All types of crashes and crash severities may be reduced by speed management strategies and strategies to combat distracted driving, whereas other crash types respond to specific infrastructure and non-infrastructure interventions.

The remainder of this section offers infrastructure and non-infrastructure strategies that relate to the conclusions from the LRSP’s data and analysis described above.

Conclusion #8: High Crash Corridors and Intersections

The LRSP identifies High Crash Corridors / Intersections and strategies to address the prevalent crash types. These corridors can be flagged for integration of safety mitigation measures in association with other roadway improvements.

Infrastructure Strategies

The term “substantive safety” refers to the measurable safety performance of a roadway or roadway system, usually expressed in terms of crashes, injuries, and fatalities normalized for user exposure, typically expressed in terms of VMT. The design and operating characteristics of a roadway system affect the substantive safety performance of the system based on the interplay of two other expressions of safety—nominal safety and perceived safety.

“Nominal safety” refers to the application of evidence-based design standards and best practices intended to reduce the frequency and severity of crashes. Examples include elements such as minimum lane widths, speed limits, effective drainage, clear and level roadside shoulders, curve super-elevation, guardrails, roadway lighting, and hundreds of other roadway design and operating standards. Each of these elements is intended to reduce the likelihood of automobile crashes and/or to reduce the severity of crashes if they occur.

“Perceived safety” refers to how roadway users gauge the relative safety of the roadway system, including the crashworthiness of their automobiles. This is important because for most roadway users, perceived safety impacts their level of focus and operating behavior. Roadway users who perceive a particular roadway environment to be relatively safe are more likely to relax their concentration and may engage in higher-risk driving behaviors such as speeding, multi-tasking, and “jaywalking,” whereas roadway users who perceive a roadway environment to be less safe are more likely to remain vigilant.

There are two primary challenges implicit in the interaction of these fundamental aspects of roadway safety. The first is that many of the measures intended to make roadways nominally safer also result in increased perception of safety by roadway users and corresponding increases in riskier user behavior. This riskier behavior, in turn, diminishes the safety benefits of the roadway system design.

The second challenge is that typical roadway users are not well-equipped to accurately assess their risk operating in a modern roadway system. The former challenge is intuitive but nonetheless...
problematic to the extent that the very design decisions that are meant to make a roadway system safer often contribute to the abuse of that system by its users. The latter challenge is a function of both biological and cognitive limitations which, when combined, can contribute to unsafe user behavior.
From a biological perspective, the speeds, distances, and complexities of modern roadway environments are outside the normal parameters of what the “human animal” has encountered for the vast majority of our recorded history. Multiple times per minute, a human roadway user will pass within arm’s length of objects that are comparable in mass to some of the largest animals on earth, traveling at speeds that are naturally achievable only by falling from a high place. Rationally, human/automobile interactions should be terrifying, but most modern humans have been conditioned since childhood to accept them as a normal, low-risk activity.

From a cognitive perspective, most people’s ability to accurately assess and process risk is more limited when probabilities are very low and outcomes are extreme. For example, most people can easily understand both the probabilities and the outcomes of a $1.00 bet against a coin toss but have almost no capacity to logically process the risk/reward proposition of buying a lottery ticket. By the same mechanism, most people cannot intuitively process the extent to which individual higher-risk, but otherwise routine, behaviors alter their probability of being involved in an automobile crash.

Historically, the traffic safety industry has focused considerable attention on nominal safety, both in terms of roadway system design and operations and motor vehicle design (bumpers, crush zones, air bags, etc.). Generally, the assumption has been made that roadway users will behave as “rational actors” using available information to make benefit/cost analyses that govern choices expected to deliver preferred outcomes. Based on quantitative and qualitative assessment of crash histories, there is ample evidence that road users do not consistently perform according to the rational actor model. This includes incidences of wantonly irrational behavior (road racing, driving while intoxicated, etc.) but more commonly occurs from a failure to accurately process risk.

Accordingly, the Collier LRSP will consider infrastructure strategies from the perspective of nominal safety and also from the standpoint of how each strategy provides better information to roadway users to help them make safer decisions about how they interact with each other and the roadway system.
Table 3-1 provides a summary of infrastructure strategies and shows how each strategy is applicable to the four emphasis areas defined through the analysis of Collier County’s crash history.

The remainder of this section provides more information about each strategy and discusses how the strategies relate to one another. Non-infrastructure strategies are addressed in Section 3 of this chapter.
Table 3-1: Infrastructure Strategies Matrix

<table>
<thead>
<tr>
<th>Infrastructure Strategies</th>
<th>Non-Motorized</th>
<th>Intersection</th>
<th>Lane Departure</th>
<th>Same Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative Intersections (ICE Process)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection Design Best Practices for Pedestrians</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Restrictions/Access Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Turn Lanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Coordination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural Road Strategies including:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pavement shoulder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Safety edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Curve geometry, delineation, and warning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bridge/culvert widening/attenuation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Guardrail/ditch regrading/tree clearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Isolated intersection conspicuity/geometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared Use Pathways, Sidewalk Improvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-Block Crossings & Median Refuge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection Lighting Enhancements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomous Vehicles (Longer-Term)</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Applicable Strategy ? = Possible Contra-indications

Speed Management

Speed is a critical factor in both a driver’s ability to perceive, react, and effectively respond to roadway conflicts and in determining crash outcomes/severity. “Speed management” refers to a combination of infrastructure and non-infrastructure strategies to both curtail incidences of speeding—traveling too fast for conditions or exceeding the posted speed limit—and designing roadways to deliver operating speeds that match the land use and access contexts of the roadway.

From an infrastructure standpoint, key elements of speed management include:

- Context classification and establishment of target speeds
- Design interventions
- Proactive signal management

Each of these elements is discussed in greater detail below.

Context Classification and Target Speeds

As part of FDOT’s implementation of “Complete Streets,” the Department has established a process for classifying major roadways based on land use and roadway network connectivity to create a continuum of context classifications ranging from rural preserve to urban core (Figure 3-1). The
context classification assignment of each segment of the State Highway System (SHS) is then used to define design specifications including appropriate design speed ranges.

In addition to design elements such as lane width and multimodal facilities requirements, a roadway’s context classification establishes allowable design speed ranges and identifies speed management strategies for each context class and design speed range. Context classifications also provide guidance for establishing appropriate target speeds, the desired operating speed for any given segment of roadway based on strategic safety and mobility objectives. When a roadway’s target speed is not supported by the roadway’s design characteristics (e.g., design speed), the roadway owner (City, County, FDOT) can establish short-, medium-, and longer-term strategies to modify the subject roadway so that the target speed is achieved.

Design Interventions

There are many design techniques to modify roadway characteristics to achieve a desired target speed, but generally they correspond with the concepts of Enclosure, Engagement, and Deflection. Chapter 202 of FDOT’s 2020 *Florida Design Manual* (FDM) defines these concepts as follows:

- **Enclosure** is the sense that the roadway is contained in an “outside room” rather than in a limitless expanse of space. A driver’s sense of speed is enhanced by providing a frame of reference in this space. The same sense of enclosure that provides a comfortable pedestrian experience also helps drivers remain aware of their travel speed. Street trees, buildings close to the street, parked cars, and terminated vistas help to keep drivers aware of how fast they are traveling. This feedback system is an important element of speed management.

- **Engagement** is the visual and audial input connecting a driver with the surrounding environment. Low-speed facilities use engagement to help bring awareness to the driver, resulting in lower operating speeds. As the cognitive load on a driver’s decision-making increases, he/she needs more time for processing and will manage speed accordingly. Uncertainty is one element of engagement; the potential of an opening car door, for instance, alerts drivers to drive more cautiously. On-street parking and proximity of other moving vehicles in a narrow-lane are important elements of engagement, as are architectural detail, shop windows, and even the presence of pedestrians.

- **Deflection** is the horizontal or vertical movement of a driver from the intended path of travel. It is used to command a driver’s attention and manage speeds. Being aphysical
sensation, deflection is the most visceral and powerful of the speed management strategies. Whereas enclosure and engagement rely, in part, on psychology, deflection relies primarily on physics. Examples include roundabouts, splitter medians (horizontal deflection), and raised intersections (vertical deflection). Deflection may not be appropriate if it hinders truck or emergency service vehicle access.

Chapter 202 of the FDM describes specific design strategies and provides a matrix of applicable strategies to achieve various speed ranges for each roadway context classification.

Signalization
Traffic signalization is another method of providing actionable information to drivers to help achieve desired operating speeds. When traffic signals are spaced at intervals of not more than 0.25 miles and are timed in a coordinated pattern consistent with a desired operating speed, most road users will learn to drive at the signal “progression speed” rather than race ahead to stop at a standing queue. Alternative performance measures for signal timing are discussed further later in this section.

Current Practice
Collier County’s roadway network falls primarily within the C-1 to C-3 range in FDOT’s context classification system. The wide spacing between intersections (2 to 6 miles) and low-density development make it difficult to implement speed management strategies. There are exceptions, however — locations that are more urban in character with a greater mix of uses, higher densities and shorter blocks — where speed management could be a useful tool to apply, as noted in the Implementation Section which follows.

Recommendation
MPO staff does not recommend further action at this time.
As part of the Collier LRSP, Collier MPO Member Governments should consider adopting/adapting FDOT’s context classification to the County’s major roadway network as a critical aspect of an overall speed management strategy. Once context classes have been established, the County should define target speeds for each segment of the major roadway network and prioritize engineering studies to identify necessary design interventions based on the frequency of severe crashes and other considerations. As part of these engineering studies, the County should consider traffic signal operations (signal density, progression speed, and cycle length) as potential interventions to help achieve desired target speeds.

Alternative Intersections (ICE Process)
According to the Federal Highway Administration (FHWA), the term "alternative intersections" refers to at-grade intersections that remove one or more conventional left-turn movements. By removing one or more of the critical conflicting traffic maneuvers from the major intersection, fewer signal phases are required for signal operation. This can result in shorter signal cycle lengths, shorter delays, and higher capacities compared to conventional intersections.

Alternative intersections also offer substantial safety benefits, with expected crash reductions of at least 15%, depending on the specific treatment. When deployed along an integrated corridor, alternative intersections can also aid in speed management and other systemic safety improvements. The key concepts, constraints, and safety benefits of common alternative intersections are described...
ICE Process - Current Practice
Intersection Control Evaluation (ICE) is a data-driven process to objectively identify optimal geometric and control solutions for roadway intersections. Factors considered in the ICE process include capacity/operational analysis, safety, and feasibility/cost. ICE is required for new intersections and for substantial changes to existing intersections on FDOT roadways. The MPO’s member agencies apply the ICE process used by FDOT may be applied or adapted to County and City-maintained roadways as well.

Recommendation
MPO staff does not recommend that additional action be taken at this time.
Roundabouts

FHWA’s informational guide on roundabouts (FHWA-DR-00-067) explains that “roundabouts are circular intersections with specific design and traffic control features. These features include yield control of all entering traffic, channelized approaches, and appropriate geometric curvature to ensure that travel speeds on the circulatory roadway are typically less than 30 mph.” Modern roundabouts may connect three or more roadway approaches and may have one or more circulating lanes.

The key safety benefit of roundabouts is that they eliminate high-energy “crossing” conflicts and have fewer overall conflicts than conventional intersections. Figure 3-25, from FHWA-DR-00-067, shows and explains the difference in conflict points between roundabouts and conventional intersections. Attention is directed to the fact that whereas traffic signals assign right-of-way to crossing conflicts, these conflicts are not eliminated by signals in cases of red-light-running and permissive left-turn movements. Merge conflicts also exist in the context of right-turn-on-red movements.

Properly designed roundabouts also are generally easier/safer to navigate for pedestrians and bicyclists, and pedestrian crossings at multi-lane roundabouts can be supplemented with various mid-block crossing devices (see discussion on pedestrian mid-block crossing elsewhere in this section). Because of these motorized and non-motorized user safety benefits, roundabouts have been found to reduce crashes overall by about 37% and reduce injury crashes by 51%.

The principal constraint of roundabouts is that they often require a greater right-of-way footprint than conventional intersections of equivalent capacity. This is especially challenging in retrofit scenarios along commercial corridors where right-of-way costs may make roundabout retrofits cost prohibitive. Because the safety benefits of roundabouts diminish as more circulating lanes are added, most roundabouts are limited to two circulating lanes. Accordingly, they are most commonly used at the intersections of either two 2-lane roads or a 4-lane roadway and 2-lane roadway.
Restricted Crossing U-Turn and Median U-Turn Intersections

Restricted Crossing U-Turn (RCUT) and Median U-Turn (MUT) intersections are illustrated in Figure 3-3 and Figure 3-4 from FHWA Informational Guides #FHWA-SA-14-070 and #FHWA-SA-14-069, respectively. Generally, RCUT intersections are more effective when the minor street thru volumes are lower than the major street left-turn volumes, with the reverse true for MUT intersections. RCUT intersections, when sequenced together in a corridor, also allow each direction of the major street to...
thru movements to be coordinated separately which can have exceptional benefits for mainline capacity.
Common features of both these alternative intersection types include the following:

- Both RCUT and MUT intersections use adjacent “secondary” intersections to help process the movements that are restricted at the main intersection. These are usually about 1/8-mile from the main intersection and may be signalized, as shown in Figure 2-3, or stop/yield controlled, similar to commonplace directional median openings. When signalized, these secondary intersections provide an opportunity for mid-block pedestrian crossing locations.

- When either intersection type displaces truck movements, either an extra-wide median or U-turn aprons, sometimes referred to as “loons,” are necessary to accommodate truck movements. The U-turn diameter (referred to as the swept-path) for a typical tractor-trailer is just under 90 ft, but the U-turn diameter of a typical 6-lane arterial with a standard 22 ft median is a little over 60 ft.

- Except in cases where the displaced movements represent an unusually high proportion of all intersection movements, RCUT and MUT intersections generally offer substantial reductions to major roadway delay and more moderate reductions in overall intersection delay. The distance traveled by displaced movements is naturally increased, but delay for displaced movements may be slightly reduced or only moderately increased depending on a range of operational factors.

- Both RCUT and MUT intersections allow for reduced signal cycle length, especially when pedestrian crossings of the major roadway are handled as two-stage movements. This, combined with greater signal density from the use of secondary intersections, can help with speed management and platooning of vehicles along alternative intersection corridors.

Similar to roundabouts, RCUTs and MUTs convert some high-energy crossing conflicts to lower energy merge-diverge conflicts, helping to reduce crash frequency and severity. According to FHWA-HRT-17-073, RCUT intersections can have an overall crash reduction of 15% and reduce injury crashes by 22% compared with conventional intersections. MUT intersections have similar benefits, with a 16% overall crash reduction and 30% injury crash reduction compared to conventional intersections.

As noted, the principal constraint on converting existing 4-phase conventional intersections to 2-phase RCUT or MUT intersections is available right-of-way to accommodate truck U-turn movements, about 140 ft for a 6-lane road and about 130 ft for a 4-lane road. Other constraints include the suitability of the RCUT or MUT operations with respect to individual intersection turning volumes and driver education about navigating the intersections.

Other Alternative Intersections

Besides RCUTs and MUTs, other alternatives at-grade intersections include displaced left turn intersections (DLT), as shown in Figure 3-5 (FHWA-SA-14-068) and quadrant intersections, as shown in Figure 3-6 (FHWA-SA-19-029). The safety outcomes of these intersection alternatives are less well understood than for RCUT and MUT intersections and, for reasons discussed below, their limited applicability makes them less integral to the LRSP than roundabout, RCUT, and MUT intersections. Nonetheless, they are included in the County’s toolkit should specific circumstances warrant their use.
DLT intersections are very-high-capacity at-grade intersections that “displace” left-turn movements at “cross-over” intersections in advance of the main intersection. This allows left-turn and thru movements from the same roadway to occur concurrently. Given the high capacity, complexity, and cost of DLT intersections, they are perhaps better thought of as alternatives to grade separation (trading right-of-way costs for structure costs) rather than alternatives to conventional intersections. Because of their substantial right-of-way footprints and potential for substantial business access impacts to adjacent land uses, DLT intersections are challenging to implement as retrofit projects.
Quadrant intersections distribute turning movements at the main intersection across multiple smaller intersections, allowing left-turn movements at the main intersection to be eliminated or limited to either roadway. Although all turning movements can be accommodated with a single-quadrant roadway, quadrant intersections offer more benefits when diagonal opposing quadrants, or all four quadrants can be fitted with perimeter roads. Unlike DLT intersections, quadrant intersections allow the main intersection to be quite compact; however, existing land uses often preclude the construction of the quadrant roadways except in greenfield or redevelopment scenarios.

Recommendation

Collier MPO member governments should adopt/adapt FDOT’s ICE process to provide data-driven analysis of intersection alternatives as part of new intersection construction and substantial modification of existing intersections. The Collier MPO, in cooperation with Collier MPO, established a funding mechanism for safety projects in the 2045 LRTP. In response to a Call for Projects, Collier MPO member governments and FDOT should select identified candidate intersections and corridors identified in the LRSP and the BPMP based on traffic crash history and other planning factors to conduct feasibility studies (Stage 1 ICE/SPICE analysis) for prioritizing and programming retrofit projects. MPO staff does not recommend taking further action at this time.
Intersection Design for Pedestrians

Many existing major roadway intersections in Collier County (as well as throughout Florida) were designed with the primary intention of maximizing motor-vehicle throughput. In addition to arterial intersections often having multiple thru traffic lanes and auxiliary left- and right-turn lanes, the radii of an intersection’s curbs are also often very large. All of these features increase the exposure of pedestrians to motor vehicle traffic and can contribute suboptimal placement of crosswalks and curb ramps, which may make crosswalks longer than necessary and/or place pedestrians in positions where they may be difficult for turning drivers to see.

When pedestrians are exposed to overly-large intersections with right-turning traffic and permissive left turns, they may not see a value proposition in using signalized intersection pedestrian features. This may result in pedestrians crossing away from intersections, relying on their own judgment rather than trusting motorists to yield and reducing pedestrian compliance with traffic signals.

Curb Radii

Large curb radii are sometimes necessary to allow trucks to navigate turns without running over the curb, damaging infrastructure, and posing a hazard to pedestrians waiting to cross. However, in many cases, urban and suburban intersections are using highway design principles where large curb radii are provided to reduce friction between right-turning vehicles and high-speed thru traffic. This makes sense in a rural setting where pedestrians are rare, but when right-turning drivers can navigate a turn at high speeds, their ability to perceive and react to pedestrians in a crosswalk is severely limited.

Whenever possible, urban intersection should be designed with the smallest possible radii that still can accommodate the appropriate design vehicle. When there are multiple lanes, intersection should be designed so that trucks turn into the interior lane(s) rather than the curb lane. When large radii cannot be avoided due to heavy truck movements, channelization (discussed below) or use of truck aprons is preferable to very large radii.

![Figure 3-7: Truck Turning Into Interior Lane](image-url)
Channelization

Using channelizing islands to break pedestrian crossings into multiple smaller stages can make large, high-capacity intersections safer and more accommodating for pedestrians. Figure 3-9 shows the preferred design for right-turn islands in which approach traffic has a clear view of the crosswalk between the curb and the island and also good views of approaching traffic. The graphic also shows the crosswalk “engaged” with the median nose, which helps ensure that left-turning drivers cannot cut the corner, thereby helping to moderate their speed.

Crosswalk Design & Operation

As shown in Figure 3-10, crosswalks should be marked using both lateral and transverse markings, be placed with individual/directional curb ramps, where possible, and generally be aligned parallel to the roadway they are along. Although crosswalks must be a minimum of 10 ft wide, they may be
wider where pedestrian volumes are high or intersection geometry is irregular. Textured or colored pavement is acceptable to supplement the retroreflective pavement markings but should not be a substitute for those markings.

At signalized intersections, crosswalks should be supplemented with countdown pedestrian signals and the “Walk” phase should be provided automatically for crossing along the major roadway and whenever the concurrent minor roadway thru-green signal interval is greater than or equal to the minimum pedestrian crossing interval. Except in special circumstances where high pedestrian volumes may effectively prohibit right-turning traffic to pass through an intersection, the “Walk” interval should be timed so that the countdown reaches zero when the concurrent thru-green signal changes from green to amber, thereby maximizing the available time for pedestrians to cross.

When heavy right-turn movements conflict with pedestrian crossings, a leading pedestrian interval (LPI) should be considered. An LPI provides pedestrians with a “Walk” indication a few seconds before parallel traffic gets a green signal, giving the pedestrian an opportunity to “take possession” of the crosswalk before turning traffic commences.

Figure 3-10: Proper Crosswalk Placement and Markings

Figure 3-11: Countdown Pedestrian Signal

Recommendation

Current Practice

The summary presented above provides confirmation that the MPO’s BPMP’s design guidelines are consistent with current Best Practices. The BPMP will be updated at least once every five years to...
Keep current and up-to-date. Collier MPO Member Governments should ensure that new major roadway intersections and NCDOT/ NCDOT-Corridor Planning efforts are prioritized to mitigate high-crash corridors and intersections. Collier MPO, in cooperation with Collier MPO Member Governments, should consider incorporating design best practices for pedestrians and the Collier MPO, in cooperation with Collier MPO Member.

Recommendation

MPO staff does not recommend taking further action at this time.
Governments and FDOT should identify candidate intersections based on traffic crash history and other planning factors for prioritizing and programming retrofit projects.

Median Restrictions/Access Management

FDOT and Collier County both have sophisticated approaches to managing access along arterial roadway corridors. Strategies include restricting median access to prohibit direct left turns from unsignalized approaches, consolidation of driveways, provisions for interconnected parking lots, reverse-frontage access, and avoiding driveways within major intersection influence areas.

Although the default approach to access management is to convert full-access medians to directional medians, as shown in Figure 3-12 along Radio Road, maintaining cross-access and providing a new traffic signal may help to address speed management and signal coordination issues as discussed elsewhere in this section.

Current Practice Recommendation

Collier MPO member governments should continue to currently employ access management strategies to minimize curb cuts and encourage right-turn-then-U-turn movements instead of direct left turns across high-volume arterial streets. In more urban contexts, member governments give consideration to the potential of signalizing problem intersections should be considered as an alternative to installing directional medians with the intent of providing more controlled crossings for motorists and non-motorized road users and facilitating greater signal density to help with corridor signal coordination.

Recommendation

MPO staff does not recommend taking further action at this time.

Right Turn Lanes

Right-turn lanes can help reduce rear-end and sideswipe crashes by allowing turning traffic to move
out of the way of thru traffic; however, in urban contexts, right-lanes can present the following safety challenges:

- Right-turn lanes can make intersections larger than they need to be, posing challenges to pedestrians.
• Right-turns lane between signalized intersections (i.e., at commercial driveways) create higher-speed conflict points for cyclists travelling in bike lanes.

• When right-turn lanes extend a substantial distance from an intersection, right-turning traffic may be able to speed past standing queues waiting at the signal. If another vehicle or a pedestrian is “nosing” thru the queues of stopped traffic to access a driveway, the resulting crash can be very severe.

• Right-turn lanes facilitate right-turn-on-red movements because the lane will never be blocked by a vehicle waiting to pass thru an intersection. Right-turn-on-red movements can make crossing more challenging for pedestrians, especially if the failure of right-turning traffic to yield to pedestrians in the crosswalk results in inadequate time to safely cross the intersection.

Current Practice Recommendation

Right-turn lanes should be used primarily along higher-speed, high-volume suburban roadways where the mitigation of high-speed rear-end and sideswipe crashes outweighs the challenges presented by the scenarios above. Right-turn lanes should be no longer than necessary to allow for safe deceleration of turning vehicles and should not be designed with the primary intent of allowing right-turning traffic to bypass queues. Because right-turn lanes allow turning traffic to get out of the way of thru traffic, curb radii should be minimized to allow for very low speed turns.

Recommendation

MPO staff does not recommend taking further action at this time.

Signal Coordination

Signal coordination refers to the timing of traffic signals relative to one another to manage the flow of traffic along a roadway corridor. Generally, the goal of signal coordination is to minimize delay along major roadways while allowing for side-street approaches to process traffic with a reasonable amount of delay. Although this approach is effective to maintain roadway level of service (LOS) along major thoroughfares, it is not always the best approach for promoting safety.

When traffic signals along a corridor are optimized to process thru traffic, the cycle-length of signals often becomes very long, taking 3, 3.5, or even 4 minutes to completely cycle through all the various signal phases. Long cycle lengths combined with signals spaced a half-mile or more apart can result in vehicles being randomly-spaced along a roadway with greater variation in speeds. Conversely, when signal cycle lengths are short and traffic signals are more closely spaced, vehicles tend to group together in “platoons”; this grouping, combined with visual cues from the next traffic signal, result in drivers maintaining a more consistent speed.

The top section of Figure 3-13 shows traffic moving along a roadway with widely-spaced signals and long cycle lengths. Because there is little driver feedback and a very wide “green band” in which approaching traffic can clear the next signal, cars are spread out along the roadway with few adequate gaps for drivers, pedestrians, and cyclists to cross the road or turn across oncoming traffic. The lower section shows the same number of cars in a platoon, with large gaps between the beginning of one platoon and the end of the preceding one. These gaps allow cross-traffic maneuvers can be made more safely.
Gaps between platoons also mean fewer vehicles will be caught in the "dilemma zone" when approaching a changing traffic signal in which the driver must quickly decide whether to brake or try
and accelerate to clear the signal. Keeping traffic out of the dilemma zone can reduce both rear-end crashes and left turn/angle crashes.

Figure 3-13: Graphic Depicting Random vs. Platooned Traffic

Recommendation
As discussed, converting roadway corridors to two-phase signal operation using alternative intersection designs is an excellent method of reducing cycle length and increasing signal density to allow for more effective platooning of traffic and achieving resulting safety outcomes. Independent of alternative intersection implementation, the MPO should coordinate with In response to the MPO’s Call for Projects (Safety and/or Congestion Management), Collier MPO Member member governments have the option to and FDOT select to identify high crash corridors identified in the LRSP and BPMP where alternative signal coordination approaches may be feasible. This may include reducing cycle lengths off-peak, operating minor intersections between arterial intersections at half the cycle length of the adjacent major intersections, and identifying locations where a new traffic signal might help the coordinated signal system perform more efficiently and more safely.

Recommendation
MPO staff does not recommend taking further action at this time.

Rural Road Strategies

Rural roadways tend to have lower traffic volumes and fewer crashes per mile than busy urban roads; however, because of generally higher travel speeds and the potential for fixed objects and/or deep ditches along the roadside, crash severity tends to be higher. The strategies discussed below can be used to treat known problem locations but should also deployed in a systemic approach to reduce severe crashes along rural highways and local streets.

Paved Shoulder, Safety Edge, and Audible-Vibratory Markings
Where possible, rural roadways should have 5-ft paved shoulders and adequate, level clear zones to facilitate recovery of vehicles that leave the roadway. Audible-vibratory pavement markings or
ground-in rumble strips should be provided between the travel lanes and the shoulder to help alert drivers before they leave the roadway, and retroreflective pavement markings should be used to delineate both the roadway centerline and the outside edge of the travel lanes.
When drivers do leave the roadway, steering the tires back onto the pavement against a vertical edge can make it difficult to safely re-enter the travel lane; drivers may oversteer and lose control of the vehicle, leading to severe crashes. As shown in Figure 3-14, providing a 30-degree contoured pavement “safety edge” can mitigate this issue, especially on roadways that lack adequate paved shoulders and warning strips.

![Figure 3-14: Photo Depicting “Safety Edge” Pavement Design](image)

Curve Geometry, Warning, and Delineation
Because rural highways often have long, straight segments with few discerning features, drivers may become complacent and not exercise due care when entering curves. Accordingly, curves should be well-marked with pavement markings and chevrons, and attempts should be made to provide adequate shoulders and recovery areas. Where necessary, the roadway should be super-elevated to help drivers navigate high-speed curves, and guardrail should be used when roadside hazards within the clear zone cannot be completely eliminated. Devices such as solar static or actuated flashing beacons and speed feedback signs may also be used to alert drivers to curve advisory speeds.

Clear Zone Hazards
Common hazards adjacent to the roadway include trees and ditches as well as lateral and cross-drain structures and concrete bridge barrier walls. Efforts should be made to inventory infrastructure elements within roadway clear zones and implement measures to mitigate the hazards they pose. This can include removing trees, re-grading ditches, providing attenuation in advance of bridge walls, and converting projecting or square edge drains to mitered-end-section designs.
Much like curves along rural highways that may catch drivers by surprise, rural intersections can be unexpected features, and drivers traveling along a rural highway may not be prepared to respond to crossing traffic. Rural intersections may also exhibit irregular or skewed geometry and may have foliage interrupting sight triangles or may exhibit other features that make it more challenging for side-street traffic to maneuver safely. Mitigation strategies include correcting poor geometry, consistently maintaining sight triangles, and posting advance warning signs with/without flashing beacons to raise awareness of approaching drivers.

Intersection Conspicuity/Geometry

Much like curves along rural highways that may catch drivers by surprise, rural intersections can be unexpected features, and drivers traveling along a rural highway may not be prepared to respond to crossing traffic. Rural intersections may also exhibit irregular or skewed geometry and may have foliage interrupting sight triangles or may exhibit other features that make it more challenging for side-street traffic to maneuver safely. Mitigation strategies include correcting poor geometry, consistently maintaining sight triangles, and posting advance warning signs with/without flashing beacons to raise awareness of approaching drivers.

Current Practice and Recommendations

Specific, known issues along rural highways should be mitigated, but a proactive, systemic approach is also necessary to improve the overall safety performance of rural road systems. The Collier MPO should work with Collier MPO Member Governments to identify high crash corridors identified in the LRSP in response to an MPO Call for Safety Projects to analyze potential funding “boxes” for systemic inventory and improvements to the county’s rural and exurban roadways, including curve and isolated intersection treatments, improved shoulders and edge treatment, and mitigation of roadside hazards.

Low-Stress, Separated Cycling Facilities

Since the 1970s, “vehicular cycling” has been the predominant approach to accommodating bicyclists within the roadway network. This approach means that cyclists operate using the same rules as motor vehicle traffic and share the roadway with motor vehicles either operating in marked bicycle lanes or riding with traffic. Vehicular cycling can be an effective approach for faster, confident cyclists to safely interact with traffic; however, a substantial majority of cyclists do not fall within this group and are uncomfortable or unwilling to ride with traffic on higher-volume, higher-speed roadways.

Although vehicular cycling has been shown to help cyclists avoid certain crash risks, sideswipe and rear-end crash types that would generally result in less severe outcomes between two motor vehicles can have severe outcomes when one of the vehicles is a bicycle. This is especially true when the speed differential between the cyclist and overtaking traffic is large. For example, a typical road cyclist operates at speeds of 15–20 mph, so along 30–35 mph roadways, the closing speed of the cyclist and overtaking traffic is not more than 20 mph. Whereas this can result in a serious crash, the overtaking motorist has more time to observe and react to the cyclist, and if a crash does occur, it is
likely to be survivable. Conversely, along roadways with operating speeds of 45 mph or greater, a faster closing speed means a motorist is less likely to react and respond to a cyclist, and if a crash does occur, it is much more likely to be fatal.

For these reasons, many agencies, including FDOT, Collier MPO and its member governments, are working to provide separated bicycle facilities, especially along roadways that operate at speeds greater than 35 mph. Separated facilities include protected bike lanes, sometimes referred to as cycle tracks, and shared-use pathways along the edge of roadways. Other low-stress bicycling facilities form alternative networks to thoroughfare streets and include “bike boulevards” and off-road trails.

Cycle tracks may be two-way or directional and feature some type of physical barrier between motor vehicle lanes and the cycling facility. Figure 3-16 shows an example of a two-way cycle track in downtown Tampa that uses a raised curb and on-street parking to separate bicycle and motor-vehicle traffic. The cycle track features special signals and other design features at intersections to help mitigate bicycle/turning motor vehicle conflicts.

![Figure 3-16: Rendering of 2-way Cycle Track in Downtown Tampa along Jackson Street/SR-60](image)

When separated facilities cannot be provided along thoroughfare streets, parallel “bike boulevards” are an option to provide for bicycle mobility. Bike boulevards are streets that have been designed, designated, and prioritized for bicycle travel and can provide a safe, inviting, low-stress option for bicyclists of varying degrees of experience. Although there is no set design template for bike boulevards, a few common principles apply:

- Logical, direct, and continuous bike route
- Safe and comfortable intersection crossings
- Reduced bicyclists delay
- Enhanced access to desired destinations
- Low motor vehicle speeds
- Low motor vehicle volumes
Recommendation

Consistent with emerging guidance from FDOT and FHWA, the Collier MPO’s BPMP, the MPO and its Member Governments have prioritized major roadway corridors to provide separated bicycle facilities and work to establish an interconnected network of bike boulevards and other off-road facilities where public rights of way connect between major roadways. One strategy to provide space for a curb to separate bike lanes from traffic is to reduce the lane width on roadways with existing 5-ft-wide bike lanes and using the recovered space to provide for separating features.

The BPMP design guidelines identify a range of potential solutions to apply to situations where ROW is limited. On roadways that lack adequate pavement width to construct protected bike lanes, it will usually be more cost-effective to provide parallel side-paths than to widen and reconstruct the roadway. If the shoulder is sufficiently wide, side-paths may be provided by widening or reconstructing the existing sidewalk. Along roadways with constrained rights-of-way, it may be possible to provide pathways by narrowing the roadway either by reducing lane widths or cannibalizing an existing bike lane. The MPO is coordinating with the CTST to promote traffic safety education that targets drivers, cyclists and pedestrians.

When side-paths are constructed, care must be taken to ensure good visibility at unsignalized conflict points (driveway and side-street approaches). Cyclists should also be encouraged to ride in the same direction as parallel traffic when facilities are provided on both sides of the road. This helps with driver expectancy, especially drivers turning left across the pathway who are not likely to anticipate a cyclist approaching over their left shoulder.

Recommendation

The MPO’s BPMP does not appear to require updating at this time. The next update will begin in 2023.

Pedestrian Crossings and Median Refuge

Given the distances between traffic signals along most of Collier County’s suburban roadway network, it is reasonable to expect that pedestrians will cross major roadways between signalized intersections. Elements such as adequate lighting, traffic platooning, and speed management make it safer to cross the street generally; however, specific infrastructure to facilitate pedestrian crossings is also necessary. These include median refuge areas and mid-block crossings.

Median Refuge Areas

When pedestrian crossing patterns are not concentrated between obvious origins and destinations, continuous raised medians or intermittent median islands allow pedestrians to break roadway crossings into two discreet movements. Ensuring that medians are dry, level walking surfaces can help encourage pedestrians to wait for an adequate gap before attempting the second leg of their crossing.
Median Refuge Areas

When pedestrian crossing patterns are more tightly clustered, mid-block marked crosswalks should be considered to provide a safer crossing option; however, along multilane roadways, a marked crosswalk alone is insufficient to provide a safe crossing, and the crosswalk markings should be supplemented with warning beacons or traffic control devices. Beacons such as a rectangular rapid-flashing beacon (RRFB), shown in Figure 3-18, should be pedestrian-actuated and are best suited to roadways with no more than four lanes and speeds of 35 mph or less.

If a midblock crosswalk is provided across a roadway with more than four lanes or speeds greater than 35 mph, a pedestrian hybrid beacon (PHB) is the preferred supplemental device. A PHB is like a traffic signal but creates less motor vehicle delay by switching to a flashing red (stop sign) operations after the first few seconds of the walk interval, as shown in Figure 3-19.
Figure 3-19: Pedestrian Hybrid Beacon Sequence

Recommendation/Current Practice

Median refuge islands and pedestrian mid-block crossings complement speed management and signal coordination strategies to allow pedestrians to more safely cross major roadways. Medians should be typically used when there are not clear concentrations of pedestrian traffic, and crosswalks should be considered to connect origins and destinations such as transit stops and neighborhood serving commercial lane uses. Marked crosswalks across major roadways generally require supplemental devices and are selected based on the speed and characteristics of motor vehicle travel.

As with considerations related to restricting median access, traffic engineers should investigate whether a midblock crossing need might be better served by signalizing a local street intersection to provide for controlled crossings at that point while also helping to provide downstream gaps for other crossing movements. Retrofit projects are eligible for funding when the MPO issues a Call for Projects for Congestion Management, Bike-Ped or Safety.

Recommendation

MPO staff does not recommend taking further action at this time.

Lighting

Roadway lighting helps drivers see roadway features at night and, if properly designed, can help drivers detect pedestrians and cyclists. Adequate lighting and well-maintained pavement markings reduce lane departure crashes but also can reduce all types of nighttime crashes by reducing the workload necessary for drivers to stay in their lane, thereby freeing up mental resources for other defensive driving tasks.

Intersection lighting provides the same function for drivers, but if designed correctly, can also help drivers see pedestrians at night. Figure 3-20 shows how intersection lighting should be in advance of crosswalk approaches to that light reflects from pedestrians back towards approaching traffic. Section 231.3.2–4 of the Florida Design Manual defines lighting criteria for intersections, roundabouts, and mid-block crosswalks to help ensure pedestrians are visible to approaching drivers.

Figure 3-21 shows a roadway corridor with light-emitting diode (LED) street lights. Contemporary LED lights offer energy cost savings compared to conventional street lights and the spectrum of light is more effective to promote safety.
Collier MPO Member Governments are familiar with and should adopt or adapt FDOT’s current intersection lighting standards and balance that consideration with residents desire to maintain the integrity of views of the night sky. The current practice is to keep nighttime skies dark, reduce glare, and put the right amount of light in the right place and at the right time to ensure the safety of all. Collier MPO, Collier MPO Member Governments, and FDOT should coordinate to prioritize intersections and roadway corridors for lighting retrofits based on nighttime crash percentages and non-motorized user crashes. Collier MPO Member Governments or the Collier MPO should consider using the mobile lighting data collection system developed by the University of South Florida to inventory actual lighting levels along County-maintained thoroughfare streets.

Recommendation
Intersection lighting is a tool that will be evaluated on a case-by-case basis.

Autonomous and Connected Vehicles
Because the majority of traffic crashes involve some element of human error, the promise of automated vehicles offers tremendous crash reduction potential, especially when those vehicles are
not only able to sense the roadway environment but also capable of communicating with one another.

Although this technology is generally thought of as futuristic, the reality is that vehicle automation has been with us for some time. Figure 3-22 shows how elements such as cruise control, anti-lock brakes, and various warning sensors have been part of our vehicle fleet for some time, and Figure 2-23 shows the various levels of vehicle autonomy with level one and two being common today.

Some challenges with automated vehicles include delay between the time fully-automated technologies are available and there is sufficient saturation in the motor vehicle fleet to result in effective use of vehicle-to-vehicle communications and measurable safety benefits. Another challenge is the limitations of automated/connected vehicles in detecting non-motorized road users. Specifically, pedestrians and cyclists are relatively small, varied in appearance, hard to predict, most exposed/fragile, and not “connected” to vehicle-to-vehicle communication systems.

Figure 3-22: History and Future of Autonomous Vehicles
Within the 2045 LRTP planning timeframe, FDOT District 1 projects that Connected and Automated Vehicles will comprise approximately 35% of Collier County’s motor vehicle fleet; however, in the interim, proactive spot and systemic safety measures are still necessary. Good design of roadways with a balance between mobility and connectivity and good infrastructure for non-motorized road users will provide benefits even once the majority of motorized vehicles drive themselves.

Collier MPO staff does not recommend taking further action at this time.

Non-Infrastructure Strategies

Referring to the same four emphasis areas, Table 3-2 shows a list of non-infrastructure strategies and the emphasis areas to which they correspond.
<table>
<thead>
<tr>
<th>Safety Issue Reporting</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision Zero Policy</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 3-2: Non-Infrastructure Strategies Matrix
Traffic Enforcement

The Statistical Analysis Technical Memorandum indicates that Collier County records fewer traffic citations per capita and per vehicle mile of travel. This appears to be in part due to relatively small municipal law enforcement agencies and therefore a greater reliance on the Collier County Sheriff’s Office and the Florida Highway Patrol to handle traffic enforcement needs. Based on the Statistical Analysis Technical Memorandum, the following enforcement areas could help to reduce severe crashes in Collier County.

- Speed Enforcement
- Red Light Running Enforcement
- Non-Motorized User Safety Enforcement (focusing on driver yield behaviors)

Although automated enforcement (red light running cameras) was suspended in Collier County in 2013, a transparent use of red-light cameras with revenues directed to fund other traffic safety programs should be considered as part of the County’s toolkit.

Recommendation: Current Practice

Traffic enforcement is one aspect of an effective speed management program and should be used to target drivers who are significantly exceeding the Speed Limit. Collier County law enforcement agencies regularly should consider applying for FDOT High Visibility Enforcement Grants for bicycle and pedestrian enforcement, and automated enforcement should be revisited—especially if manpower resources preclude additional human red-light-running enforcement.

Recommendation

Collier MPO staff does not recommend taking further action at this time.

Material Give-Aways

The LRSP Statistical Analysis (Section 2) Memorandum notes that while Collier County does not have a disproportionate ratio of nighttime crashes overall, non-motorized road user crashes are more likely to occur at night. A common tactic to reduce nighttime non-motorized user crashes is to provide retro-reflective materials to vulnerable populations including:

- School-age children
- Transit customers
- Homeless shelter clients
- Shift workers who may commute at night

Examples of retroreflective materials include low-cost backpacks with reflective strips, Velcro ankle strips to keep pant cuffs from catching in bicycle gears, and simple safety vests. Low-cost bicycle light kits can also be distributed and may be provided as part of a warning stop when police officers notice cyclists riding at night without proper lights.

Current Practice
MPO staff is looking into the availability of free safety products to give-away at public meetings and special events. The only funding available to the MPO to expend on safety product give-aways would be the local funding contributions from member entities, which the MPO has avoided increasing over the years.

The Collier County Sheriff’s Office provided the following information:

“The Collier County Sheriff’s Office has a variety of community outreach events per year involving contact with adults and juveniles for bicycle and pedestrian safety. These include our in-school Youth Relations Bureau, Community Policing Units, and Crime Prevention Unit that provide bicycle, bicycle helmet, literature, lights, and reflective material giveaways in addition to verbal education. These have occurred during general school hours, targeted community events on the weekends, or random ‘pop-up’ events in the community at targeted locations.

The Crime Prevention Unit and District Community Policing Units hold targeted ‘pop-up’ events in areas that patrol units, citizen complaints, or statistical data show dangerous pedestrian and bicycle activity. One of these areas, for example, is on East Tamiami Trail between Airport-Pulling Road South and Bayshore Drive; see Figure 2-8 on P. 2-17. Bicycle helmet, bicycle light, reflective materials, and literature giveaways in conjunction with dialogue take place several times per year with these events.

We believe that these events proactively have kept the number of bicycle and pedestrian crashes to not be statistically significant. We are largely able to do this with safety product giveaways. Thus, we would encourage the contribution of these products and literature to our agency for continued proactive safety educational measures. Increasing local contributions would be beneficial in maintaining our efforts.

The Collier County Sheriff’s Office Safety and Traffic Enforcement Bureau receives funding through the Florida Department of Transportation High Visibility Enforcement (H.V.E.) grant. Various methodologies are used with this grant to reduce bicycle and pedestrian crashes and increase safety. The Safety and Traffic Enforcement Bureau works in conjunction with District Community Policing Units, Patrol Units, Crime Prevention Unit, Youth Relations Bureau, Media Relations Bureau, and other entities to promote the goals of this program.”

Recommendation

MPO staff does not recommend taking further action at this time.
Young Driver Education

A key conclusion from the LRSP Statistical Analysis Memorandum is that Collier County’s demographics likely play a role in its better than average safety performance. Because Collier County does not have a high proportion of younger drivers, the overall expected crash rates as a function of population age demographics are better than Florida as a whole. In the future, however, as Collier County continues to grow, it is likely that its demographic profile will become more “normal” and the introduction of more, young drivers will begin to adversely impact Collier County crash statistics.

Although older drivers certainly have limitations in terms of vision, reflexes, and other age-related deficits, these drivers are more likely to recognize their limitations than younger drivers and act accordingly. This is born-out by data showing that older drivers are less likely to be involved in nighttime crashes or crashes during rush hour because these drivers choose to avoid higher-risk times of day.

To help reduce crashes among younger drivers, supplemental drivers’ education programs should be considered. One such program, funded by FDOT District 7, provides high school seminars focused on teen driver safety issues including bicycle and pedestrian safety, motorcycle safety, and impacts of DUI. Statewide FDOT provides grants under the umbrella of the State Safety Office Teen Driver Safety program to fund programs that help to educate teen drivers.
Current Practice

FDOT and the state MVD conduct training sessions for young drivers. The Collier County Sheriff’s Office provided the following information:

“The Collier County Sheriff’s Office Youth Relations Bureau and Crime Prevention Unit provide direct and indirect education programs to Young Drivers. The Youth Relations Bureau provides the “Teen Driver Challenge” to young, high school aged drivers in order to provide them with a comprehensive view of safe driving habits and legalities surrounding the challenge of driving as a youth. They also integrate with drivers’ education courses and other school functions in providing educational literature and dialogue with young drivers (and future drivers) in order to prepare them for real life encounters on the roadway. One of the significant focuses they have made is with respect to Texting and Driving; with state laws that make texting and driving illegal under certain conditions and the significant focus that youth have on their cell phones. They also speak with the students in Drivers Ed about the dangers of driving under the influence of alcohol and drugs.

Youth Relations Bureau members and Crime Prevention Unit members also make hundreds of contacts with young drivers every year in settings not specifically structured towards driving but that still allow specific educational opportunities for young drivers to be educated on legalities and safe methods of driving.”
Recommendation:

MPO staff does not recommend taking further action at this time. The Collier MPO and/or the Collier County Sheriff’s Office should engage with the Florida Teen Safety Driving Coalition to identify potential teen driver education programs that can be implemented in Collier County. Although teen drivers make up a relatively small proportion of Collier County’s demographic presently, safer driving habits will have a long-term benefit and establishing programs now will be useful as the County’s population continues to grow.

Adult Traffic Safety Education

From the public outreach survey responses, it is clear that many Collier County residents do not feel safe biking or walking along major roadways and that driver behavior with respect to yielding/making space for non-motorized users is inadequate. The Bike/Walk Tampa Bay program, administered by the University of South Florida and funded by FDOT District 7, offers virtual and in-person pedestrian, driver and bicyclist safety presentations to adult audiences. The presentation uses an Audience Response System to quiz the audience and poll their opinions.

Since 2015 over 30,000 individuals have participated in seminars with each participant taking a “pledge” to WalkWise, BikeSmart, and Drive Safely and work to educate others about the importance of safe behaviors.
Recommendation: Current Practice

The Collier MPO is following-up on the more detailed safety analysis contained in the BPMP and should consider coordinating an active participant in the CTST, which includes with FDOT District 1 and Local Law Enforcement Agencies, to in promoting traffic safety education for drivers, pedestrians and cyclists, pilot a similar program within the District. Implementation activities included as part of the Collier LRSP include an inventory of safety-oriented organizations which can be reviewed to identify potential seminar providers.

The Collier County Sheriff’s Office added the following information:

“The Collier County Sheriff’s Office participates in sporadic speaking engagements with community organizations specific to drivers, pedestrians, and cyclist safety laws, regulations, and safety tips. Further, The Collier County Sheriff’s Office participates in hundreds of community events every year that involve proactive community outreach. Literature, giveaways, and dialog about motorized and non-motorized vehicle safety are often included in these events.

The Collier County Sheriff’s Office Media Relations Bureau provides safety tips and messages for drivers, pedestrians, and cyclists through news releases and a variety of online publications. These messages generate hundreds of thousands of views on CCSO’s various social media platforms. The MRB also works closely with local news organizations to promote the agency’s safety message.

To address the growing problem of motorcycle crashes, fatalities, and injuries, Collier County Sheriff’s Office seeks to start the implementation of the Safe Motorcycle and Rider Techniques (SMART) training program, a countermeasure addressed in chapter 5, section 3.2 “Motorcycle Rider Training” of the National Highway Traffic Safety Administration (NHTSA’s) Countermeasures That Work guide. It will be a six-hour course supported by the University of South Florida’s Center for Urban Transportation Research.

The program will be design around skill sets taken from the Basic Police Motorcycle Operators Course. The instructor ratio will be no less than 1:6 with one lead instructor. Each class will hold a maximum of 36
students in an effort to maximize saddle time and course repetition without creating undue fatigue. There will be six stations that emphasize fundamental principles and that have real world applications. Each station will be 45 minutes long with a 15-minute break in between stations. During each break, there will be an additional five minutes of instruction on a relevant motorcycle operation topic. The breaks will be designed as a working break in which questions and additional comments would be addressed.”

Recommendation:

MPO staff recommend, and will report on, taking a more proactive approach to bike-ped safety education by working closely with the MPO’s Bicycle and Pedestrian Advisory Committee, FDOT, the CTST and the informal Naples Bike-Ped Safety Coalition to promote bike/ped safety informational videos, brochures and special events.

Continuing Education

Continuing education programs for safety professionals can help ensure that as standards and practices evolve, the professional community remains abreast with the state of the art. This is especially important in Collier County where so much of the public roadway system is constructed by private developers. The Collier MPO should encourage participation in FDOT’s Local Agency Traffic Safety Academy (LATSA).

LATSA is a free webinar series focused on:

- Sharing knowledge about traffic safety
- Discussing new and ongoing safety programs
- Explaining available funding sources
- Presenting local best practices,
- Learning about new safety treatments and technologies
- Discussing project delivery processes

Over 75 webinars have been presented since 2013 covering a wide range of traffic safety topics.
Recommendation:
The Collier MPO will continue to promote and distribute safety education materials geared towards professional engineers and planners, and should encourage local agency partners and the development community to participate in LATSA webinars to help ensure good roadway design practices along both public and private roadways.

Safety Issue Reporting System

Non-emergency reporting systems can help identify potential safety issues before crash histories are established. Applications such as Wikimaps allow agencies to collect “crowdsourced” tips which can be categorized. These applications also allow users to click on and concur with previously reported issues and/or upload photos so that monitoring agencies can gather more actionable intelligence about potential issues. In the northeast Florida Area, FDOT District 2 maintains a Community Traffic Safety Team engineering issues system which allows safety partners to submit engineering concerns with pictures and follow-up contact information. [Collier County’s 311 Reporting System is an example.](#)
Recommendation:
MPO staff does not recommend taking further action at this time. The Collier MPO consider piloting a safety issue reporting system; however, it is important that unlike an automated public works customer services system, users are clearly informed that the program is a pilot project only until such time as the agency workload, intake, and resolution process can be understood and managed.

Vision Zero Performance Measures and Targets
The Collier MPO has adopted FDOT’s Vision Zero safety performance measures and targets. The development of the LRSP expands the MPO’s awareness and understanding of traffic safety data. The data analysis component of the LRSP has been factored into the project prioritization methodology in the Traffic System Performance Report (TSPR) and the 2045 LRTP. The LRSP recommendations for nonmotorized users safety are consistent with the design guidelines and prioritization criteria in the MPO’s BPMP, adopted in 2019. Vision Zero is a strategy to eliminate all traffic fatalities and severe injuries, while increasing safe, healthy, equitable mobility for all. First implemented in Sweden in the 1990s, Vision Zero has proved successful across Europe—and now it is gaining momentum in major American cities. Vision Zero focuses on systems approaches to preventing crash fatalities and incapacitating injuries. Speed management, equity, and human engagement are key aspects of Vision Zero.

While Vision Zero is normally a city-centric approach to traffic safety relying on the strong executive leadership of a city mayor, aspects of Vision Zero can be translated to a County framework.

According to the Vision Zero Network, there are nine components of a strong Vision Zero commitment:

- Political commitment from the highest-ranking local officials
- Multi-disciplinary leadership
- Action plan identifying clear strategies, owners, and interim targets and performance measures
- Equity focus
- Cooperation and collaboration
- Systems-based approach
- Data-driven
- Community engagement
- Transparency

Recommendation:
The Collier MPO has adopted FDOT’s Vision Zero performance measures and targets. As part of the implementation process for the Collier LRSP, the Collier MPO and the County’s MPO member governments should explore the merits of adopting a Vision Zero approach to safety in Collier County.
Recommendation:

SUMMARY

MPO staff interviewed technical staff of member agencies to identify current practices related to each of the strategies identified by the consultant team, and in the process, refined the preliminary draft recommendations to focus on three key strategies, identified on Table XXX as Enhanced Practices:

1) Flag high crash locations identified in the LRSP to incorporate safety analysis in the project scoping and design for road improvement projects and stand-alone bike/ped facility projects.

2) Flag high crash locations for Road Safety Audits using MPO SU safety set-aside and/or state, federal funds. The BPMP already does this for stand-alone bike-ped projects.

3) Promote bike-ped safety videos, handouts and special events more proactively as part of the CTST / Blue Zones Naples Bike-Ped Safety Coalition.

See Table XXX on the following two pages.
Recommendation:
SECTION 4: IMPLEMENTATION PLAN

LOCAL BEST PRACTICES

Collier MPO staff interviewed member agency staff to determine the extent to which the Recommendations described in the previous section have already been put into practice. The following is a brief summary of current, local Best Practices.

City of Naples – Traffic Department, Police Department Activities

Engineering Analysis and Response to Serious Injury and Fatal Crashes - The City of Naples Traffic Department reviews all serious injury and fatal crashes to determine if there is a need for engineering modifications. If City staff identify any recommended actions Streets and Drainage Division and Planning Division staff review police reports on fatal crashes to determine if there may be a need for an engineering (design) solution. If staff has actions to recommend actions on State roads, they reach out to FDOT and request consideration of any modifications.

Engineering Analysis of High Crash Corridors & Intersections - If there are a significant number of crashes at a particular intersection, the Naples Police Department typically notifies the Traffic Department for an assessment.

Enforcement - If Traffic Department staff notice areas of concern, they work with the Naples Police Department to increase enforcement by placing speed trailers out or integrating police presence.

Education - The Traffic Department is researching ways to incorporate more safety education into their programs, particularly for pedestrian/bike safety and understanding of the rules of the road by all users – motorized and non-motorized.

Special Studies and Activities - Traffic Department staff often perform speed studies, review intersections for line-of-sight issues, evaluate local needs for intersection improvements including stop signs or other modifications to determine if they meet warrants, and incorporate bike/pedestrian markings and signage where a need is identified.

Collier County – Growth Management Department -Traffic Operations Division and Transportation Planning Division

Engineering Analysis and Response to Serious Injury and Fatal Crashes – The Traffic Operations Division has a FTE for a PE to monitor and report on crash data. The staff member maintains the County’s Crash Data Management System (CDMS), and regularly pulls crash reports to determine whether there is an indication that roadway design could be an issue. The Division develops potential solutions and seeks funding to implement them.

Engineering Analysis of High Crash Corridors & Intersections – The Traffic Operations Division prepares an annual report on high crash intersections.
Enforcement – The Traffic Operations Division has fixed and portable speed monitoring signs. The Division places the portable signs in locations in response to public requests and keeps them in place for a two-week period. The County Sheriff’s Office also deploys speed monitoring signs in problem areas. The Traffic Operations Division and the Sheriff’s office have a cooperative working relationship and share information regarding enforcement needs and capabilities.

The County’s five (5) fixed messaging signs are located on high crash locations along:
- Immokalee Road
- Collier Blvd
- Golden Gate Blvd
- Randall Blvd
- Oil Well Road

Special Studies and Activities

The Traffic Operations Division produces an annual report identifying high crash intersections. Staff reviews all crash data for three subsets of intersections:
- Energized (signalized)
- 4-way unsignalized
- 3-way unsignalized

Staff ranks intersections by comparing crash rates over 1, a crash rate over the “mean” of all intersections, a statistical computation of any intersection with a crash rate over the critical crash rate, a comparison of the expected value, and injury severity. Next, staff reviews each noted intersection in depth and implements corrective actions where needed.

Collier County Sheriff’s Office (CCSO)

Education and Enforcement

The CCSO takes a proactive approach that combines traffic safety education and enforcement. The Community Engagement Division focuses on public outreach and education and works closely with the Traffic Enforcement group. The CCSO notes that in a community with a large number of tourists and part-time residents, there are instances when educating a member of the public on local laws is more effective than issuing a citation. The County Sheriff’s Office maintains multiple data bases on crashes and deploys enforcement strategically to high crash locations. If engineering design modifications appear to be needed, the CCSO contacts the local road agency.
CONCLUSIONS

Based on the foregoing set of recommendations proposed by the MPO’s consultant, Tindale Oliver, and MPO staff’s compilation of current practices, staff concludes that the following recommendations have already been sufficiently implemented:

1. The high crash corridor and intersection locations identified in the LRSP have been incorporated into project prioritization criteria in plans recently approved by the MPO Board:
 - 2045 Long Range Transportation Plan (LRTP) approved December 11, 2020
 - Transportation System Performance Report and Action Plan, approved September 11, 2020

2. The high crash corridor and intersection locations identified in the LRSP may be considered eligible for expenditure of MPO TMA SU funds in addition to those locations identified by:
 - Collier County Traffic Operations Section on an annual basis
 - FDOT’s annual reporting system
 - The MPO’s Bicycle and Pedestrian Master Plan (2019)

3. The 2045 LRTP establishes funding for safety projects using TMA SU funds; the MPO will periodically issue a Call for Safety Projects

4. The LRSP provides confirmation of the following strategies already in use by member governments:

 Infrastructure
 - Speed Management – limited to deploying speed monitoring signs in specific locations
 - Alternative Intersections (FDOT’s ICE Process)
 - Median Restrictions/Access Management
 - Right Turn Lanes
 - Signal Coordination
 - Rural Road Strategies
 - Design Best Practices for pedestrians and cyclists including:
 - Intersection design
 - Shared Use Pathways and Sidewalk Improvements
 - Mid-Block Crossings & Median Refuge
 - Intersection Lighting Enhancements
5. The LRSP pointed out the desirability of creating a Traffic Safety Coalition to raise awareness and promote traffic safety education. While the LRSP was in development, the Blue Zones of Southwest Florida began organizing and promoting an informal partnership referred to as the Naples Bike-Ped Safety Coalition as an outgrowth of the Community Traffic Safety Team (CTST). The CTST concept was initiated by FDOT. Membership is fluid and informal. Blue Zones currently hosts the CTST, which welcomes participation by state agencies, health and emergency service providers, local law enforcement, other Nongovernment Organizations (such as Naples Pathways Coalition, and Naples Velo), local governments and the MPO. MPO staff has long been active in the CTST and has joined forces with the Naples Bike-Ped Safety Coalition. As a further implementation step, MPO staff is proactively promoting bike-ped safety videos, handouts and special events sponsored by other entities.

Staff Recommended Enhanced Practices:
Monitor and report on progress made:
- Speed management – project specific in high crash locations identified by the LRSP
- Bike-ped safety education – more proactive engagement by the MPO and member governments; include safety material give-aways that can be acquired free of charge from FDOT and NHTSA
- Road Safety Audits – coordinate with FDOT on programming the MPO’s priority safety projects in the Work Program
- Safety Analysis - include in project scoping and design for road improvement projects and stand-alone bike/ped facility projects in high crash locations identified in the LRSP and BPMP

The Infrastructure and Non-Infrastructure strategy recommendations in the prior chapter of the Collier LRSP will require coordination between the Collier MPO, its member governments, FDOT, and other agencies to implement. This chapter provides a summary matrix of potential implementation processes for each strategy, including the relative timeframe and order of magnitude costs. The matrix includes identification of agency responsibilities for planning/prioritizing and actual implementation of each strategy where that distinction is applicable.

In addition to implementation processes for each recommended strategy, this chapter also includes recommendations for LRSP monitoring measures for both implementation and outcomes as well as recommendations related to incorporating updates to the LRSP within existing Collier MPO and Member Government processes.

Infrastructure Implementation Processes

This section outlines implementation processes for each infrastructure strategy recommended in the prior section. For the purposes of this discussion, the following general parameters apply to the timeframe and cost descriptions for each implementation step.
- Timeframe from LRSP adoption:
 - Short: 0 to 3 years
 - Medium: 3 – 5
 - Long: Greater than 5 years

- Cost per implementation step for planning, prioritization, and non-infrastructure activities
 and per roadway centerline mile or per major intersection for infrastructure projects:
 - Low: Less than $250,000
 - Medium: $250,000 - $1,000,000
 - High: Greater than $1,000,000

Attention is directed to the fact that while individual policy, prioritization, and project development
activities are identified for many of the infrastructure countermeasures, these activities could occur
in parallel with individual corridor and intersection identification, prioritization, and project
development processes addressing multiple strategy areas.
Speed Management

Speed management refers to a broad set of strategies to help ensure that roadway operating speeds are compliant with posted speed limits and that speed limits are set with intentionality and are appropriate for the land use context of each roadway corridor. Accordingly, the first step in implementing speed management strategies is to establish roadway context classification and define target speeds. Once this is done, design interventions can be identified and implemented either as stand-alone projects or through the course of ongoing investments like state and local resurfacing programs.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign Context Classification</td>
<td>Collier MPO</td>
<td>Short</td>
<td>Low</td>
</tr>
<tr>
<td>Establish Target Speeds</td>
<td>Maintaining Agencies</td>
<td>Short</td>
<td>Low</td>
</tr>
<tr>
<td>Implement Design Interventions</td>
<td>Maintaining Agencies</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Implement Proactive Signal Management Strategies</td>
<td>Maintaining Agencies</td>
<td>Short</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Notes:
- Context classifications have been assigned to the State Highway System (SHS) by FDOT. Systemwide context class assignments should be reviewed and adjusted as necessary when specific projects are planned. The MPO or the member governments could take a lead role in establishing context classification assignments for thoroughfares that are not part of the SHS.
- In addition to context classification, target speeds assignments should consider traffic crash history (i.e., is the roadway an emphasis area corridor) as well as future development patterns. The MPO or member governments should take a leadership role for establishing target speeds for the entirety of the County’s major road network, but FDOT consultation/concurrence should be incorporated in setting target speeds on the SHS. As with context class assignments, target speeds assigned on a systemic basis should be updated when specific projects are programmed.
- Design interventions generally fall into two categories: Shorter term, lower cost interventions generally limited to sign and pavement marking improvements and longer-term, higher-cost modifications to roadway geometry and or signal density/intersection control. Identification and implementation of sign and pavement marking speed management strategies should be incorporated into each maintaining agency’s roadway resurfacing program. Geometric changes (i.e., “complete streets projects”) are more likely to be implemented as stand-alone projects and should be prioritized by the MPO in conjunction with relevant maintaining agencies as part of the MPO’s Congestion Management Process (CMP) and Long Range Transportation Plan (LRTP).
- Traffic signal timing and phasing strategies to moderate progression speeds and improve gaps can be implemented as a short-term strategy along corridors which have sufficiently close signal spacing (i.e., <= 0.75 miles) for signals to provide drivers with adequate feedback to help them moderate their speeds. The maintaining agencies can identify and prioritize corridors based on discrepancy between posted/operating speeds and target speed with the support of the Collier MPO. Once prioritized, operational analyses can be performed to evaluate the potential for speed management through signal coordination. Along roadways with broader signal spacing, this strategy will require investments in new signalized intersections (see also ICF Princess and Median Restrictions/Access Management) and is therefore a higher cost and longer-term implementation process.

Table 4-1: Speed Management Implementation Steps
Alternative Intersections (ICE Process)
The ICE process is a technical approach and a policy commitment to evaluate alternative intersection designs along new/widened roadways, when new signals are needed, and when major modifications are planned for an existing signalized intersection. Consideration of alternative intersections can also be done proactively as part of intersection operational and safety projects or multimodal corridor studies.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt/Adapt FDOT ICE Process for Locals Roads</td>
<td>Member Governments</td>
<td>Short</td>
<td>Low</td>
</tr>
<tr>
<td>Notes: This is a simple policy commitment to consider intersection alternatives under specific circumstances and is not inconsistent with current Collier County and FDOT practice.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate/Implement Alternative intersections as Part of New Roadways, Roadway Widening, and Major Intersection Improvements</td>
<td>FDOT/Member Governments</td>
<td>Ongoing</td>
<td>Medium</td>
</tr>
<tr>
<td>Notes: Cost may be neutral or cost savings may be achieved depending on the intersection alternatives selected and the relative costs of conventional signalized intersections.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify/Prioritize Corridors and Intersections and Conduct ICE Stage I Screening</td>
<td>Collier MPO/ Maintaining Agencies</td>
<td>Medium</td>
<td>Low—Medium</td>
</tr>
<tr>
<td>Notes: Identification/prioritization of corridors based on crash data, level of service, and other parameters such as roadway/right-of-way cross section can be done on a countywide basis as a continuation of strategies already included in the MPO’s CMP. Stage I ICE screenings of corridors can be performed with either the Collier MPO or member governments/FDOT as the lead agency. Depending on the number of corridors/intersections screened, timeframe and cost may extend beyond the short-term/low-cost parameters established for this Implementation Plan.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement ICE Corridor Screening Recommendations</td>
<td>Maintaining Agencies</td>
<td>Medium — Long</td>
<td>Medium — High</td>
</tr>
<tr>
<td>Notes: Once intersections and corridors have completed Stage I screening, additional technical analysis is necessary to validate project concepts, design alternatives, and proceed to construction. In some circumstances—especially if right-of-way acquisition or environmental impacts are likely—it may be necessary to conduct a Planning, Design & Environmental (PDEE) study prior to moving to design and construction. Implementation of Alternative Intersections should be done in conjunction with other strategies including speed management interventions and implementation of design best practices for non-motorized users.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4-2: Alternative Intersection (ICE) Implementation Steps
Intersection Design Best Practices for Pedestrians

Similar to implementation of Alternative Intersections, implementation of design best practices for pedestrians includes both a commitment to apply best-practice design principles to planned projects and identification and prioritization of intersections and corridors for retrofit projects.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorporate Best-Practice Design Elements in Member Government Design Manuals or Incorporate by References by Adoption of NACTO Design Guidance and/or Relevant Elements of the Florida Design Manual (FDM)</td>
<td>Member Governments</td>
<td>Short</td>
<td>Low</td>
</tr>
<tr>
<td>Notes: Formally adopting design standards/guidance will help ensure design best practices are implemented uniformly—especially for roadway and intersection projects constructed by developers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorporate Pedestrian Design Best Practices in Planned Projects</td>
<td>FDOT/Member Governments</td>
<td>Ongoing</td>
<td>Medium</td>
</tr>
<tr>
<td>Notes: Cost may be neutral or cost savings may be achieved depending on the design strategies applied</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify/Prioritize Corridors and Intersections and Pedestrian Design Best Practice Concept Development</td>
<td>Collier MPO/Maintaining Agencies</td>
<td>Short—Medium</td>
<td>Low—Medium</td>
</tr>
<tr>
<td>Notes: Identification/prioritization of corridors based on crash data, level of service, and other parameters such as roadway and intersection characteristics can be done on a countywide basis as a continuation of strategies already included in the MPO’s CMP. Screening and concept development can be performed with either the Collier MPO or member governments/FDOT as the lead agency. Depending on the number of corridors/intersections screened, timeframe and cost may extend beyond the short-term/low-cost parameters established for this implementation plan.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement Pedestrian Design Best-Practice Projects</td>
<td>Maintaining Agencies</td>
<td>Medium—Long</td>
<td>Medium—High</td>
</tr>
<tr>
<td>Notes: Once intersections and corridors pedestrian design concepts have been identified and vetted at a planning/concept design level, additional technical analysis is necessary to validate project concepts, design alternatives, and proceed to construction. Generally, most pedestrian design interventions will not require a PD&E study prior to moving to design and construction. Implementation of pedestrian design interventions may occur as stand-alone projects or may incorporate speed management and alternative intersection strategies.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4-3: Pedestrian Design Best Practice Implementation Steps
Median Restrictions/Access Management

From the standpoint of reducing left-turn and angle crashes, these strategies are largely a continuation of existing FDOT and Collier MPO Member Governments’ preference for raised medians and restricted left-turn access along higher-speed multilane roadways. With respect to implementation of LRSP Speed Management strategies, the following implementation steps are needed.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider Signalization Based on Coordinated Systems Warranting Criteria In Lieu of Directional Medians in More Urban Context Areas (i.e. C4, C5 and C6)</td>
<td>Maintaining Agencies</td>
<td>Medium – Ongoing</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Notes: As discussed herein, more closely spaced coordinated traffic signals can help moderate speeds and increase the extent to which thru traffic is grouped in “platoons” making more gaps for other movements. Collier County maintaining agencies should think critically about closing existing full-access median openings in more urban context areas and consider whether signalization or implementation of alternative intersection types might better serve the overall safety and mobility outcomes of the system. When intersecting roadway traffic volumes do not meet the minimum Manual of Uniform Traffic Control Devices (MUTCD) criteria to warrant a traffic signal, the subject roadway corridor, consideration should be given to evaluate the roadway using the coordinated systems warranting process to determine if a new signal is likely to improve overall traffic progression.

Table 4-4: Median Restriction/Access Management Implementation

Right Turn Lanes

Right turn lanes should continue to be used along higher-speed (45 MPH+) arterial roadways where they are effective in reducing rear-end and sideswipe crashes. However, in more urban contexts use of auxiliary right turn lanes can complicate pedestrian crossings, discourage speed management, and create unnecessary key-hole conflict areas for cyclists. In more urban contexts, right turn lanes should not be used primarily for capacity reasons and, when necessary for safety purposes, should be complemented by tighter curb radii or properly designed islands and should be no longer than necessary to allow for deceleration.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider Limiting Use of Right Turn Lanes in More Urban, Lower Speed Contexts (i.e. C4, C5 and C6)</td>
<td>Maintaining Agencies</td>
<td>Medium – Ongoing</td>
<td>Low</td>
</tr>
</tbody>
</table>

Notes: Critically examine the need for right turn lanes with respect to contraindications related to pedestrian crossing, bike conflicts, and speed management in more urban context areas. When provided, ensure right turn lanes are no longer than necessary for safety purposes and that any capacity benefits are ancillary to meeting a demonstrable safety need.

Table 4-5: Right Turn Lane Strategy Implementation

Signal Coordination

See discussion under Speed Management: Proactive Signal Coordination Strategies.
Rural Road Strategies

Rural road strategies primarily focus on reducing the frequency and severity of single-vehicle/roadway-departure crashes and crashes at isolated, unsignalized intersections. For the most part, these investments are considered “systemic” safety improvements in that they should be applied based on roadway characteristics (i.e., substandard road conditions) rather than solely in response to documented, site-specific crash histories.

The following measures are recommended to implement the LRSP rural road strategies.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory rural roadways to identify roadway segments, intersections, curves, and other features that have substandard features.</td>
<td>Maintaining Agencies</td>
<td>Short—medium</td>
<td>Low—Medium</td>
</tr>
<tr>
<td>Notes: Inventory elements include pavement width, condition of pavement edge, fixed objects within the clear zone, ditch grades, curve geometry, warnings, and guardrail; and intersection sight distance and skew geometry. This inventory process may be undertaken as a stand-alone effort, but, at a minimum, should be performed as part of any future rural roadway resurfacing projects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paved Shoulder and Safety Edge should be considered along rural roadway which lack an existing paved shoulder.</td>
<td>Maintaining Agencies</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Notes: Even when a 5ft paved shoulder cannot be accommodated, a 2ft shoulder with Safety Edge provide a safety benefit. Rumble strips and rumble stripes should also be considered where appropriate.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify curve and isolated intersection needs and prioritize geometric improvements and low-cost treatments.</td>
<td>Maintaining Agencies</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Notes: Based on crash history, estimated entering volumes, and adverse geometric conditions (skew, limited sight distance, etc.) advance warning, advisory speed, delineation, and lighting should be considered for isolated intersections and curved roadway segments. In addition to more costly geometric improvements, low-cost interventions can include solar flashing beacons, oversized stop signs, chevrons and other delineation (for curves), trimming of trees and foliage to improve sight triangles.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge and Guardrail Improvements</td>
<td>Maintaining Agencies</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Notes: As part of the inventory of the County’s rural roadways, substandard bridge/culvert guard rail and guard rail terminal ends should be identified and upgraded.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4-6: Rural Road Safety Strategy Implementation
Shared Use Pathways, Sidewalk Improvements

Emerging state and national guidance is moving away from on-street bike lanes towards separated or protected bicycle facilities along roadways with operating speeds over 35 MPH. With recent and pending updates to the Florida Design Manual, preference for buffered bike lanes along higher-speed arterial roadways (i.e. 35 MPH+) will be replaced with guidance advocating protected or separated bike facilities. The Collier MPO Bicycle and Pedestrian Plan includes recommendations for completing sidewalk gaps along the County’s major roadway network.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply Level of Traffic Stress in addressing prioritized and addressing the County’s bicycle and pedestrian needs.</td>
<td>Collier MPO or Maintaining Agencies</td>
<td>Medium to Long</td>
<td>Medium to High</td>
</tr>
</tbody>
</table>

Notes: Level of Traffic Stress (LTS) is a performance measure for bicycle facilities that identifies which facilities will be suitable for a broad cross-section of the public who, as a rule, are not comfortable operating in mixed traffic or in striped bike lanes along higher speed, higher volume motor vehicle traffic. The Collier MPO Bicycle and Pedestrian Master Plan (2019) provides a comprehensive evaluation of bicycle and pedestrian infrastructure along Collier County’s thoroughfare roadway network and identifies priority improvement needs. Application of LTS criteria will generally shift investment toward separated pathways or protected on-street facilities in lieu of traditional marked bike lanes.

Table 4-7: Shared Use Pathways Implementation

Mid-Block Crossings and Median Refuge

Crosswalks at unsignalized intersections with appropriate supplemental warning and/or traffic control devices may be necessary and appropriate when there is a concentration of pedestrian crossings within close proximity along a roadway. When pedestrian origins/destinations are more dispersed, raised medians or median islands (in conjunction with speed management, lighting, and other countermeasures) can improve safety for pedestrian crossings. Strategies to provide mid-block crossing infrastructure are described below.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate roadways with painted medians (i.e. two-way-left turn lanes) for construction of median islands.</td>
<td>Maintaining Agencies</td>
<td>Medium</td>
<td>Low</td>
</tr>
</tbody>
</table>

Notes: Most major roadways in Collier County have raised medians; however, roadways with painted medians may provide opportunities to install pedestrian refuge islands which can allow pedestrians to cross each direction of traffic independently. Generally, construction of median islands within existing two-way left turn lanes represents a lower cost safety investment since the new islands do not generally impact drainage or utilities.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-block crosswalk candidate identification</td>
<td>Maintaining Agencies</td>
<td>Medium</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Notes: As part of the inventory of the County’s rural roadways, substandard bridge/culvert guard rail and guard rail terminal ends should be identified and upgraded.

Table 4-8: Mid-Block Crossings and Median Refuge Implementation
Intersection Lighting Enhancements

FDOT has adopted new standards for intersection lighting that specifically focus on illumination levels at pedestrian crosswalks. These standards require approximately twice the level of illumination as AASHTO highway lighting standards as their intent is to help drivers see pedestrians crossing at night, rather than to simply help drivers see roadway features. Although Collier County does not have a disproportionate number of nighttime crashes overall, non-motorized user crashes are more likely to occur at night. Accordingly, the following implementation strategies are recommended to enhance lighting as a countermeasure for non-motorized user crashes with ancillary benefit of reducing lower severity fixed-object crashes.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory intersection lighting along urban corridors and non-motorized user emphasis area crash corridors</td>
<td>Maintaining Agencies</td>
<td>Short</td>
<td>Low</td>
</tr>
</tbody>
</table>

Notes: As an initial step, this can include a simple inventory of intersection lighting luminaires at and adjacent to signalized intersections with subsequent analysis of lighting levels compared to FDOT recommended horizontal illumination as described in Table 231.2.1 of the FDOT Florida Design Manual.

| Prioritize and implement lighting retrofits | Maintaining Agencies | Medium | Medium |

Notes: For urban corridors (Context Classifications C4, C5, and C6) and for corridors identified as non-motorized crash emphasis corridors, lighting retrofits should be considered based on the degree to which intersection lighting is deficient, corridor crash history, and funding availability. In addition to stand-alone lighting retrofit projects, intersection lighting should be upgraded as part of planned intersection improvement projects, new traffic signals, and signal reconstruction projects.

| Autonomous Vehicles (Longer Term) |

Public agencies may promote autonomous vehicles by participating in pilot projects and potentially selecting partially or fully autonomous vehicles for public agency vehicle fleets (where cost feasible and appropriate). However, autonomous vehicle technology development and implementation is primarily driven by the marketplace as well as State and federal regulations. As such, no specific implementation strategies are recommended as part of the LRSP.
Non-Infrastructure Implementation Processes

This section outlines implementation processes for each non-infrastructure strategy recommended in the prior section. For the purposes of this discussion, the following general parameters apply to the timeframe and cost descriptions for each implementation step.

- **Timeframe from LRSP adoption:**
 - Short: 0 to 3 years
 - Medium: 3 – 5
 - Long: Greater than 5 years

- **Cost per implementation step for annual program costs and program management**
 - Low: Less than $50,000
 - Medium: $50,000 – $100,000
 - High: Greater than $100,000

Traffic Enforcement Strategies

Enforcement strategies include supplementing general traffic enforcement activities with corridor-specific efforts to address emphasis area crash types, consideration of participating in FDOT’s High Visibility Enforcement program and, reconsideration of the use of automated enforcement systems.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify corridor specific enforcement strategies</td>
<td>Law Enforcement Agencies</td>
<td>Ongoing</td>
<td>High</td>
</tr>
<tr>
<td>Notes: Data from the LRSP shows which Collier County roadway corridors have the highest incidence of severe crashes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consider pursuing FDOT High Visibility Enforcement bicycle and pedestrian safety grants</td>
<td>Law Enforcement Agencies</td>
<td>Short</td>
<td>Low</td>
</tr>
<tr>
<td>Notes: As part of FDOT’s Alert Today, Alive Tomorrow program, grants are available to Collier County law enforcement agencies to conduct high visibility enforcement for non-motorized user safety. Any such enforcement activities should be directed at both driver and non-motorized user compliance issues and should be used as an opportunity to provide educational material and safety equipment (e.g. retroreflective items, low-cost bike lights) to individual contacted by law enforcement.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconsider use of automated traffic signal enforcement</td>
<td>Law Enforcement Agencies</td>
<td>Medium—Long</td>
<td>Medium</td>
</tr>
<tr>
<td>Notes: National research indicates that automated traffic signal enforcement can reduce angle and left turn crashes at signalized intersections. If Collier County elects to reinstate automated enforcement, best practices include selecting locations based on documented crash history, conducting before/after crash analyses, and using fines collected for traffic safety purposes (e.g. infrastructure and non-infrastructure program funding).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4-10: Law Enforcement Implementation Strategies
Safety Material Distribution

Safety materials including placards, low-cost bicycle light kits, and retroreflective items (bracelets, backpacks, vests) can be distributed either ancillary to enforcement activities or as part of “grass-roots” safety outreach and education programs.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procure and distribute safety materials</td>
<td>Multiple</td>
<td>Short-Term</td>
<td>Low-Medium</td>
</tr>
</tbody>
</table>

Notes: Safety materials, as described here-in, can be procured using grant funding, agency discretionary funding, or private contributions. Distribution can occur across multiple outlets including law enforcement, schools, public health organizations, and homeless services.

Table 4-11: Safety Material Distribution

Young Driver Education

In other communities safety professionals have been recruited by FDOT to lead high-school seminars to promote traffic safety awareness for teen drivers. These seminars are coordinated with the public school system and can be conducted through drivers’ education courses or general assemblies. The seminars focus on safe driving behavior with an emphasis on bicycle and pedestrian safety from the perspective of motorists and non-motorists. As an alternate to FDOT, the Collier County Sheriff or Collier County School Board could serve as the sponsoring agency.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinate with FDOT District 1 to pilot a Teen Safe Driving seminar program</td>
<td>FDOT or Collier Sheriff</td>
<td>Short-Term</td>
<td>Low-Medium</td>
</tr>
</tbody>
</table>

Notes: This program has been established in the Tampa Bay Area funded by FDOT through the University of South Florida Center for Urban Transportation Research.

Table 4-12: Supplemental Driver’s Education Training
Small Group Outreach

In the Tampa Bay Area, a small group outreach program (WalkWise Tampa Bay) was funded by FDOT and managed by the University of South Florida Center for Urban Transportation Research (CUTR). The program provides in-person or virtual seminars to community groups, businesses, and other organizations upon request. The seminars focus on pedestrian and bicycle safety and also provide for distribution of safety materials. Other safety topics can be integrated based on local needs.

Table 4-13: Small Group Outreach

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinate with FDOT District 1 to consider piloting a small group outreach program similar to WalkWise Tampa Bay.</td>
<td>FDOT (funding); TBD (Implementation)</td>
<td>Short Term</td>
<td>Low – Medium</td>
</tr>
</tbody>
</table>

Notes: This program has been established in the Tampa Bay Area funded by FDOT through the University of South Florida Center for Urban Transportation Research. A similar institutional partner should be recruited for program implementation in Collier County. This program appears to be consistent with the mission of the Southwest Florida Blue Zones project.

Continuing Education

This LRSP recommendation refers to provision of professional development information to Collier County safety professionals related to emerging best practices for traffic safety engineering and planning. Several FDOT Districts are currently collaborating to expand on FDOT District 7’s (Tampa Bay) Local Agency Safety Academy webinar series. This free webinar series provides information on various safety engineering topics. The Collier MPO can also encourage member governments to participate in the Gulf Coast Safe Streets Summit, South East Florida Safe Streets Summit, or partner with Southwest Florida MPOs to establish a similar annual safety-focused event.

Table 4-14: Continuing Education

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promote participation in FDOT’s Local Agency Traffic Safety Academy webinars</td>
<td>FDOT or Collier MPO</td>
<td>Short Term</td>
<td>Low – Medium</td>
</tr>
</tbody>
</table>

Notes: http://www.tampabaytraffic safety.com/LATSA/SitePages/Home.aspx

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participate in regional Safety Summits and consider establishing a Southwest Florida Safety Summit or collaborating to expand the Gulf Coast Safety Summit</td>
<td>Collier MPO – Other Southwest Florida MPOs</td>
<td>Medium – Ongoing</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Notes: Gulf Coast Safe Streets Summit: https://www.gulfcoastsafestreetssummit.org/; Southeast Florida Safe Streets Summit: https://www.safestreetssummit.org/
Vision Zero Policy

As part of the Collier MPO’s Performance-Based Planning Process, Safety Performance Targets have been established that include zero traffic deaths and zero serious injuries. The LRSP provides the vast majority of technical analysis—including definition of the County’s High Injury Network—necessary to become a Vision Zero Community. Implementing the LRSP within the context of the Vision Zero framework expresses the policy commitment of Collier County’s elected leaders to implementation of the Plan across multiple discipline areas to achieve the MPO’s existing performance targets.

<table>
<thead>
<tr>
<th>Implementation Step</th>
<th>Lead Agency</th>
<th>Timeframe</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implement steps necessary to be recognized as a Vision Zero Community</td>
<td>Collier Member Governments</td>
<td>Short Term</td>
<td>Low--Medium</td>
</tr>
</tbody>
</table>

Notes: The steps to become recognized as a Vision Zero Community are summarized below. Note that while the Vision Zero framework is generally based around municipal governments, County governments can become members.

- Setting a clear goal of eliminating traffic deaths and serious injuries among all road users within an explicit timeframe (i.e., 10 years);
- The Mayor (or top elected official) publicly, officially committing to Vision Zero within the set timeframe and directing appropriate city staff to prioritize the work;
- A Vision Zero Action Plan or Strategy is in place, or the Mayor and key departments have committed to creating one in a specified time frame and which includes a focus on being data driven, equitable, and including community input;
- Key city departments, including Transportation, Public Health, and Mayor’s Office are actively engaged as leaders and partners in the process of developing the Vision Zero Plan, implementing it, and evaluating and sharing progress;
- A Vision Zero Task Force (including the agencies listed above, as well as community stakeholders, and others) meets regularly to lead and evaluate efforts.

Table 4-15: Vision Zero Policy
Relationship to Collier MPO 2045 Long Range Transportation Plan and Transportation Improvement Program

The MPO’s 2045 Long Range Transportation Plan (LRTP) documents multimodal transportation needs and cost-feasible project priorities over the 20-year period from 2026 – 2045. Committed projects slated for construction prior to 2026 are incorporated in the MPO’s 5-year Transportation Improvement Program (TIP). The Draft 2045 LRTP incorporates the Emphasis Areas identified in the LRSP by reference and also incorporates the MPO’s Bicycle and Pedestrian Mastermobility Plan.

Infrastructure Strategy Implementation Opportunities

Table 4-16 on the following page shows the relationship of the projects prioritized in the Draft 2045 LRTP – Cost Feasible Plan to corridors identified as having an overrepresentation of emphasis area crashes in Section Chapter 2 of the LRSP. Each LRTP project shown in the table represents an opportunity to advance the infrastructure strategies described in Chapter Section 3 of the LRSP. While there is significant overlap between DRAFT 2045 LRTP projects and LRSP emphasis high crash corridors, some emphasis area corridors do not have planned capital projects and are eligible for $3m in SU funding set-aside for Safety projects under the LRTP, in addition to any State funds that may be available, will need to be for stand-alone studies and studied and prioritized for safety enhancements consistent with the prior sections of this Chapter RSP.

In addition to the potential for substantive safety improvements to be incorporated in the LRTP Cost-Feasible Plan projects, the LRTP sets aside over $41m of funding for implementation of the Collier Bicycle Pedestrian Mastermobility Plan. While not all bicycle and pedestrian mobility projects have an inherent safety nexus, the prominence of non-motorized user safety as a planning factor in developing the mobility project priorities for cyclists and pedestrians means that implementation of this plan, as a component part of the LRTP, will generally advance non-motorized user safety. The Transportation System Performance Report and Action Plan, also incorporated into the 2045 LRTP by reference, includes traffic safety as a prioritization criterion. The 2045 LRTP allocates $41m in SU funding for congestion management projects.

LRSP Update Cycle

Because the LRTP sets funding priorities for the Federal and State dollars within the MPO’s purview, the most effective timeframe to update the Collier MPO LRSP is concurrent with or in advance of the LRTP. If updated in advance of the LRTP, the LRSP would remain a stand-alone document that would serve as input into the LRTP needs assessment and project prioritization process. AlternatelyThe Final Draft of the 2045 LRTP identifies the LRSP could be integrated as a core document to be updated and incorporated by reference into future updates of the LRTP as a component part. In either scenario, the 5-year cycle of the LRTP update process would allow for adequate time to assess the recommended LRSP monitoring measures (discussed below) and for the data-driven analysis of safety performance in Collier County to influence capital project priorities.
<table>
<thead>
<tr>
<th>Rank</th>
<th>Project ID</th>
<th>Description</th>
<th>Location</th>
<th>Time</th>
<th>Total Fatal Crashes</th>
<th>Total Injury Crashes</th>
<th>Total Severe Injury Crashes</th>
<th>Total Pedestrian Crashes</th>
<th>Total Bike/Crashes</th>
<th>Total Sideswipe Crashes</th>
<th>Total Rear End Crashes</th>
<th>Total Ranking</th>
<th>Lane Ranking</th>
<th>Intersection Ranking</th>
<th>Pedestrian Ranking</th>
<th>Bike Ranking</th>
<th>Sideswipe Ranking</th>
<th>Rear End Ranking</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>75</td>
<td>Major Intersection Improvement at Immokalee Rd</td>
<td>Immokalee Rd</td>
<td>125</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>Major Intersection Improvement at Immokalee Rd</td>
<td>Immokalee Rd</td>
<td>125</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>Major Intersection Improvement at Immokalee Rd</td>
<td>Immokalee Rd</td>
<td>125</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>Major Intersection Improvement at Immokalee Rd</td>
<td>Immokalee Rd</td>
<td>125</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table 6-13: Relationship of Seashore Areas Corridors and DOT 2020 LRTP Cost Feasible Projects.
Monitoring and Performance Measures

Safety Performance Measures

The Collier MPO has adopted FDOT’s System P-Vision Zero safety performance measures and targets on an annual basis. Report sets a target of zero for fatalities and incapacitating injuries. The MPO Director provides an annual report to the MPO Board in December which tracks how well the MPO is performing in meeting its performance targets. In addition, the 2045 LRTP includes a Transportation System Performance Report using a template developed by FDOT and the MPO Advisory Council (MPOAC). A similar report is incorporated in the MPO’s Transportation Improvement Program (TIP).

In addition to these high-level performance measures, incremental progress can be assessed by tracking safety outcomes on an ongoing basis as follows:

<table>
<thead>
<tr>
<th>Data and Analysis Product</th>
<th>Update Cycles</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-1: Comparison of Collier County and State of Florida Crash Rates</td>
<td>Annual</td>
<td>Update using 5-year average — data sourced from DHSMV and FDOT</td>
</tr>
<tr>
<td>Table 2-5: Emphasis Area Summary</td>
<td>Annual</td>
<td>Update using 5-year average — data sources from Collier CDMS</td>
</tr>
<tr>
<td>Tables 2-6 to 2-9: High Crash Corridors</td>
<td>5-years</td>
<td>Update using Collier CDMS and MPO Major Roadway Network segments</td>
</tr>
<tr>
<td>Tables 2-3 and 2-4: Traffic Citation Data</td>
<td>5-years</td>
<td>Data sourced from DHSMV, FDOT</td>
</tr>
<tr>
<td>Figures 2-1 to 2-5: Crash Data Distributions</td>
<td>5-years</td>
<td>Update using Collier CDMS and MPO Major Roadway Network segments</td>
</tr>
</tbody>
</table>

Table 4-15: LRSP Performance Measures Monitoring Process

Monitoring of Plan Implementation

The MPO Director will include information on progress made towards implementing the LRSP to the Annual Report; most likely in combination with reporting on progress towards meeting safety targets generally due to the linkages established between the LRSP, the TSPR, the BPMP and the 2045 LRTP. Plan implementation can be monitored using a report card developed by consolidating Tables 4-1 through 4-15 into a single monitoring report. Consistent with the 5-year update cycle recommended above, implementation steps identified as short term should be completed prior to the next LRSP update and items identified as mid-term should be underway. If new strategies are adopted or currently recommended strategies are eliminated or modified, this should be noted in the monitoring report along with documentation of why a specific strategy was added, replaced, or eliminated.

Updating the Local Roads Safety Plan

The baseline data analysis captured in this first iteration of the LRSP will be updated every 5 years in...
preparation for developing the next iteration of the LRTP. The traffic safety updates may not necessitate a stand-alone document like the LRSP; rather, they could be incorporated in other planning efforts, such as the Transportation System Performance Report. New strategies and recommendations will be incorporated as needed, and the plan may shift focus overtime.
Summary of Low Cost/Short-Term Infrastructure Strategies

While long term, transformative investments in the County’s transportation system will require substantial resources, time, and policy commitment to implement, the LRSP includes a number of shorter-term, relatively low cost strategies to reduce the frequency and severity of crashes on the County’s roadway network. These strategies are summarized in Table 4-18.

<table>
<thead>
<tr>
<th>Low Cost/Short Term Infrastructure Strategies</th>
<th>Non-Motorized</th>
<th>Intersection</th>
<th>Local Departure</th>
<th>Rural Depiction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Establish context classification and set target speeds.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Implement relevant signal timing and coordination strategies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative Intersections (ICE Process)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Establish Member Government ICE Process and Identify Candidate Locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection Design Best Practices for Pedestrians</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Retrofit High Emphasis Crosswalk Markings, Countdown Pedestrian Signals, and R10-15 Warning Signs (as appropriate).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Provide Leading Pedestrian Interval as appropriate (consider FDOT guidance; Traffic Engineering Manual 3.11).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Restrictions/Access Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Provide directional median openings where appropriate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Turn Lanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Limit use of right turn lanes in lower speed, urban context areas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Coordination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Consider new signals using coordinated systems warrant in lieu of directional median openings for developer permit projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural Road Strategies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Integrate paved shoulder construction and use of Safety Edge treatment with resurfacing program.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Based on rural roadway inventory, provide solar flashing beacons and improve warning signs approaching curves and isolated rural intersections.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Based on rural roadway inventory, continue maintain sight triangles.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Cost/Short Term Infrastructure Strategies (continued)</td>
<td>Non-Motorized</td>
<td>Motorized</td>
<td>Lane Departure</td>
<td>Same Direction</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Shared Use Pathways, Sidewalk Improvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Update minimum design standards based on context classification to require shared use pathway construction as part of site access developer requirements where appropriate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-Block Crossings & Median Refuge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Provide mid-block crosswalks with pedestal mounted RRFBs and/or median islands in existing two-way-left turn lanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection Lighting Enhancements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Incorporate intersection lighting enhancements with signal reconstruction projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.16: Short-Term/Low Cost Infrastructure Strategies
APPENDIX 1: GLOSSARY OF TECHNICAL TERMS
GLOSSARY

- **AADT** – Average Annualized Daily Traffic: Daily traffic volumes collected over multiple (usually three) days and adjusted for seasonal variations in traffic volumes.

- **Emphasis Area** – Emphasis areas are usually divided into 22 categories based on extensive research by the AASHTO and National Cooperative Highway Research Program in their Strategic Highway Safety Plan (NCHRP). These include infrastructure (e.g., utility pole collisions), crash types (e.g., head-on collisions, lane departures), behavior (e.g., alcohol, speeding, occupant protection), vehicle types (e.g., bicycles, motorcycles, heavy trucks), and at risk populations (e.g., young drivers, older drivers). Implementation guides have been developed for these emphasis areas and are available as 22 volumes of the NCHRP Report 500. Emphasis Areas for the Collier LRSP represent a combination of similar crash types related to non-motorized road users, intersection crashes, lane departure crashes, and same direction (rear-end/side-swipe) crashes.

- **Functional Classification** – System used to classify roadways based on a transect of mobility vs. access.
 - **Freeway & Expressway** - Roads in this classification have directional travel lanes usually separated by some type of physical barrier, and their access and egress points are limited to on- and off-ramp locations or a very limited number of at-grade intersections. These roadways are designed and constructed to maximize their mobility function, and abutting land uses are not directly served by them.
 - **Arterial Roadway (Major)** - These roadways serve major centers of metropolitan areas, provide a high degree of mobility and can also provide mobility through rural areas. Forms of access include driveways to specific parcels and at-grade intersections with other roadways.
 - **Arterial Roadway (Minor)** - Minor Arterials provide service for trips of moderate length, serve geographic areas that are smaller than their higher Arterial counterparts and offer connectivity to the higher Arterial system. In an urban context, they interconnect and augment the higher Arterial system, provide intra-community continuity and may carry local bus routes. In rural settings, Minor Arterials should be identified and spaced at intervals consistent with population density, so that all developed areas are within a reasonable distance of a higher level Arterial. The spacing of Minor Arterial streets may typically vary from 1/8- to 1/2-mile in the central business district (CBD) and 2 to 3 miles in the suburban fringes. Normally, the spacing should not exceed 1 mile in fully developed areas.
 - **Collector Roadway** - Collectors serve a critical role in the roadway network by gathering traffic from Local Roads and funneling them to the Arterial network. Collectors are broken down into two categories: Major Collectors and Minor Collectors. Major Collector routes are longer in length; have lower connecting driveway densities; have higher speed limits; are spaced at greater intervals; have higher annual average traffic volumes; and may have more travel lanes than their Minor Collector counterparts. In rural areas, AADT and spacing may be the most significant designation factors. Major Collectors offer more mobility and Minor Collectors offer more access. Overall, the total
mileage of Major Collectors is typically lower than the total mileage of Minor Collectors, while the total Collector mileage is typically one-third of the Local roadway network.

- **Local Street** – Locally classified roads account for the largest percentage of all roadways in terms of mileage. They are not intended for use in long distance travel, except at the origin or destination end of the trip, due to their provision of direct access to abutting land.

- **ICE** – Intersection Control Evaluation: A FHWA and FDOT process for evaluating appropriate traffic control measures at major intersections.

- **Signal Timing** – Refers to a set of parameters for controlling traffic signals what include:
 - Cycle Length – the time for a traffic signal to complete all phases
 - Phase – a set of allowed concurrent movements
 - Split – the amount of time allocated to each phase
 - Offset – the time between common phases at adjacent traffic signals. This is used to progress traffic along a roadway from upstream to downstream signals
 - Platoon – a group of vehicles travelling between coordinated traffic signals

- **VMT** – Vehicle Miles Traveled: A measure of driver exposure based on miles of roadway travel.
APPENDIX 2: CRASH DATA QUALITY CONTROL TECHNICAL MEMORANDUM
Collier County MPO
Local Road Safety Plan

Crash Data QC
Technical Memorandum

March 24, 2020
FINAL

Prepared for:

Prepared by:
TABLE OF CONTENTS

Section 1: Introduction ... 1-1

Section 2: Methodology and Data Review ... 2-3

Event Relation to Intersection.. 2-4

Crash Type .. 2-2

Impact Type .. 2-2

Section 3: Conclusions and Recommendations .. 3-2

LIST OF TABLES

Table 1-1: Summary of Crashes (2014-2018) .. 1-1

Table 2-1: Revised Data Input by Reporting Agency ... 2-3

Table 2-2: Frequently Revised Data Fields .. 2-3

APPENDICES

Appendix A: Revised Motorized Vehicle Crashes

Appendix B: Revised Non-Motorized Crashes
SECTION 1: INTRODUCTION

A five-year crash history from 2014 to 2018 was queried using data from the Collier County Crash Data Management (CDMS) for both motorized vehicles and crashes involving non-motorized road users. Table 1-1 shows a five-year total of motorized vehicle and non-motorized road user crashes based on the highest injury severity for each report.

<table>
<thead>
<tr>
<th>Severity</th>
<th>Motor-Vehicle Crashes</th>
<th>Non-Motorized Crashes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent</td>
<td>Percent</td>
<td></td>
</tr>
<tr>
<td>Fatal</td>
<td>130</td>
<td>45</td>
<td>175</td>
</tr>
<tr>
<td>Incapacitating Injury</td>
<td>669</td>
<td>170</td>
<td>839</td>
</tr>
<tr>
<td>Non-Incapacitating Injury</td>
<td>2,758</td>
<td>501</td>
<td>3,259</td>
</tr>
<tr>
<td>Possible Injury</td>
<td>5,290</td>
<td>454</td>
<td>5,744</td>
</tr>
<tr>
<td>Property Damage Only</td>
<td>45,175</td>
<td>315</td>
<td>45,490</td>
</tr>
<tr>
<td>TOTAL</td>
<td>54,022</td>
<td>1485</td>
<td>55,507</td>
</tr>
</tbody>
</table>

As part of the Collier County Local Road Safety Plan (LRSP), key attributes of the more severe crashes in the data set were reviewed to verify that the coded crash data accurately corresponds to the narrative information and collision diagrams included in each crash report. This was done to ensure that reasonably accurate data is used for the purpose of developing the LRSP recommendations and to identify potential data coding trends and issues to address with each of the reporting Law Enforcement Agencies.

The purpose of this memorandum is to summarize the methodology used to review and re-code crash reports, as well as summarize the findings from the review process. Consistent with the LRSP Scope of Services, the following crash reports were reviewed:

For each of these crash reports, the following data items were checked:

- Crash Location: Verification and correction of crash node assignment and approximate XY coordinates.
- Crash Type: Verification and correcting collision diagram crash type. (Note: this is a data attribute that is calculated by the Collier CDMS from other crash data attributes including vehicle direction, vehicle movement, manner of collision, and first harmful event.)
- Checking for completeness and compare key data fields with narrative and diagram as follows:
 - Manner of collision

Table 1-1: Summary of Crashes (2014-2018)
- First Harmful Event
- Event Impact
- First Harmful Event Relation to Junction
- Driver Action (First)
- Driver Restraint System (Vehicle 1 and 2)
- Non-Motorized User Data:
 o Description
 o Action Prior to Crash
 o Location at Time of Crash
 o Actions/Circumstances (First)
 o Safety Equipment (First)
SECTION 2: METHODOLOGY AND DATA REVIEW

Attribute fields for motorized and non-motorized crash data were exported from the Collier WebCDMS database and manually reviewed and checked for accuracy by an engineering technician. When individual data elements were deemed inaccurate, a revised value was coded in a separate data field. An input was deemed inaccurate if the crash report data input was inconsistent with the crash report’s written narrative or illustrated collision diagram.

As shown in Table 2-1, Collier County Sheriff’s Office collects the highest number of crash reports, followed by Florida Highway Patrol, Naples Police Department (PD), and Marco Island PD. Collier County Sheriff's Office has the highest number (60 percent) of reports that were revised during the clean-up process, followed by Marco Island PD and Naples PD.

Table 2-1: Revised Data Input by Reporting Agency

<table>
<thead>
<tr>
<th>Reporting Agency</th>
<th>Reports Reviewed</th>
<th>Reports Revised</th>
<th>Percent Reports Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida Highway Patrol (FHP)</td>
<td>1,895</td>
<td>608</td>
<td>32%</td>
</tr>
<tr>
<td>Collier County Sheriff’s Office (CCSO)</td>
<td>2,690</td>
<td>1,613</td>
<td>60%</td>
</tr>
<tr>
<td>Naples Police Department (PD)</td>
<td>327</td>
<td>155</td>
<td>47%</td>
</tr>
<tr>
<td>Marco Island PD</td>
<td>124</td>
<td>91</td>
<td>73%</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5,042</td>
<td>2,470</td>
<td>49%</td>
</tr>
</tbody>
</table>

During the review process, the fields with the most inconsistent coding needing editing were Event Relation to Intersection, Crash Type, and Impact Type. There were twelve (12) motorized and eight (8) non-motorized crash entries that did not have XY coordinates. These crash entries were manually reviewed, and a location was added.

Table 2-2 shows a summary of the total revisions to these attributes for Motor Vehicle (MV) crashes and Non-Motorized User (NM) crashes for each reporting agency.

Table 2-2: Frequently Revised Data Fields

<table>
<thead>
<tr>
<th>Reporting Agency</th>
<th>Event Relation to Intersection</th>
<th>Crash Type</th>
<th>Impact Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MV Crashes</td>
<td>NM Crashes</td>
<td>MV Crashes</td>
<td>NM Crashes</td>
</tr>
<tr>
<td>FHP</td>
<td>96</td>
<td>34</td>
<td>310</td>
<td>12</td>
</tr>
<tr>
<td>CCSO</td>
<td>471</td>
<td>415</td>
<td>339</td>
<td>381</td>
</tr>
<tr>
<td>Naples PD</td>
<td>43</td>
<td>45</td>
<td>35</td>
<td>17</td>
</tr>
<tr>
<td>Marco Island PD</td>
<td>18</td>
<td>25</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>628</td>
<td>522</td>
<td>709</td>
<td>439</td>
</tr>
</tbody>
</table>

MV: Motor Vehicle NM: Non-Motorized
Example cases of each commonly miscoded crash type are described on the following pages of this memorandum. Appendices A and B show cross tabulations for each of these crash data attributes for motor vehicle and non-motorized user crashes respectively.

EVENT RELATION TO INTERSECTION

This field indicates where the crash event occurred on the roadway. There are 12 categories under this field:

- Non-Junction
- Intersection
- Intersection-Related
- Driveway/Alley Access Related
- Railway Grade Crossing
- Entrance/Exit Ramp
- Crossover-Related
- Shared Use Path or Trail
- Acceleration/Deceleration Lane
- Through Roadway
- Unknown
- Other

The image above was initially coded as "Non-Junction" then revised to "Intersection"

The QC process showed that the top 3 revised categories under Event Relation to Intersection were:

Motorized Vehicles:
- Non-junction
- Intersection
- Intersection-related

Non-Motorized:
- Non-Junction
- Intersection
- Driveway/Alley Access Related
CRASH TYPE

This field defines the overall type of the crash and is used to generate collision diagrams. There are 14 crash types:

- Angle
- Head On
- Hit Fixed Object
- Hit Non-Fixed Object
- Left Turn
- Rear End
- Right Turn
- Run Off Road
- Sideswipe
- Single Vehicle
- U-Turn
- Unknown
- Bike
- Pedestrian

The crash in the image above was correctly recoded to the intersection rather than a non-junction, and recategorized as a Left-Turn crash instead of the incorrect “Angle” crash.

The top 3 revised categories under Crash Type were:

Motorized Vehicles:
- Angle
- Sideswipe
- Rear End
- Hit Fixed Object

Non-Motorized:
- Hit Non-Fixed Object
- Rear End
- Bike
- Pedestrian
IMPACT TYPE

This field defines the manner and direction of the collision. There are 9 impact type categories:

- Front to Rear
- Front to Front
- Angle
- Sideswipe (Same Direction)
- Sideswipe (Opposite Direction)
- Rear to Side
- Rear to Rear
- Unknown
- Other

The image above shows an example of a crash report initially coded as “Front to Front” then revised to “Angle”.

The top 3 most revised categories under Impact Type:

Motorized Vehicles:
- Front to Rear
- Angle
- Sideswipe (same direction)

Non-Motorized:
- Angle
- Sideswipe (Same Direction)
- Rear to Rear
SECTION 3: CONCLUSIONS AND RECOMMENDATIONS

Coding errors and inconsistencies within crash reports impact the usefulness of crash data for both strategic planning and traffic study purposes. Specifically, inaccurate location coding can contribute to misidentified corridor and spot location priorities. Improper Relation to Intersection information can create confusion as to whether there is a problem with an intersection or if there are issues with the intersection approaches (e.g. adjacent commercial driveways or median openings). Incorrect or internally inconsistent coding of crash attributes such as First Harmful Event, Vehicle Movement, and Vehicle Direction can result in either incorrect Crash Type assignment or result in an inability to determine the Crash Type. This data field is critical for understanding overall crash patterns and is also a fundamental element in analyzing corridors or spot locations.

Differences in crash report edits between law enforcement agencies in Collier County suggest that data entry methods and training may play a part in determining the accuracy of crash reporting. As the Local Road Safety Plan progresses, the intent to discover what are the leading causes for crash report inconsistency and inaccuracy. Follow up interview will be conducted with LEA officers from different departments to gain additional insight on crash reporting and learn ways to improve accuracy and consistency.

Based on the data analysis conducted thus far, key question areas include methods to capture crash location and consistency of coding those data points that contribute to Crash Type assignment.
Appendix A: Revised Motorized Vehicle Crashes

EVENT RELATION TO INTERSECTION

<table>
<thead>
<tr>
<th>Reporting Agency</th>
<th>Reports Reviewed</th>
<th>Reports Revised</th>
<th>Percent Report Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSO</td>
<td>1,689</td>
<td>471</td>
<td>28%</td>
</tr>
<tr>
<td>FHP</td>
<td>1,603</td>
<td>96</td>
<td>6%</td>
</tr>
<tr>
<td>Naples PD</td>
<td>202</td>
<td>43</td>
<td>21%</td>
</tr>
<tr>
<td>Marco Island PD</td>
<td>60</td>
<td>18</td>
<td>30%</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event Relation to Intersection</th>
<th>Original Value</th>
<th>Revised Value</th>
<th>Total Revised</th>
<th>Percent Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Junction</td>
<td>2229</td>
<td>298</td>
<td>252</td>
<td>24%</td>
</tr>
<tr>
<td>Non-Junction</td>
<td>51</td>
<td>7</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>Railway Grade Crossing</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Entrance/Exit Ramp</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Driveway/Alley Access Related</td>
<td>51</td>
<td>3</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>Crossover-Related</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>Acceleration/Deceleration Lane</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Through Roadway</td>
<td>89</td>
<td>1</td>
<td>9</td>
<td>28%</td>
</tr>
<tr>
<td>Unknown</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>100%</td>
</tr>
<tr>
<td>Other</td>
<td>53</td>
<td>5</td>
<td>28</td>
<td>53%</td>
</tr>
</tbody>
</table>
CRASH TYPE

<table>
<thead>
<tr>
<th>Reporting Agency</th>
<th>Reports Reviewed</th>
<th>Reports Revised</th>
<th>Percent Report Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSO</td>
<td>1,689</td>
<td>339</td>
<td>20%</td>
</tr>
<tr>
<td>FHP</td>
<td>1,603</td>
<td>310</td>
<td>19%</td>
</tr>
<tr>
<td>Naples PD</td>
<td>202</td>
<td>35</td>
<td>17%</td>
</tr>
<tr>
<td>Marco Island PD</td>
<td>60</td>
<td>25</td>
<td>42%</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

ORIGINAL VALUE

<table>
<thead>
<tr>
<th>CRASH TYPE</th>
<th>TOTAL</th>
<th>REvised VALUE</th>
<th>PERCENT REvised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle</td>
<td>647</td>
<td>511</td>
<td>78%</td>
</tr>
<tr>
<td>Head On</td>
<td>83</td>
<td>60</td>
<td>72%</td>
</tr>
<tr>
<td>Hit Fixed Object</td>
<td>537</td>
<td>456</td>
<td>85%</td>
</tr>
<tr>
<td>Hit Non-Fixed Object</td>
<td>18</td>
<td>18</td>
<td>100%</td>
</tr>
<tr>
<td>Left Turn</td>
<td>489</td>
<td>413</td>
<td>85%</td>
</tr>
<tr>
<td>Rear End</td>
<td>1106</td>
<td>918</td>
<td>83%</td>
</tr>
<tr>
<td>Right Turn</td>
<td>69</td>
<td>55</td>
<td>80%</td>
</tr>
<tr>
<td>Run Off Road</td>
<td>84</td>
<td>63</td>
<td>75%</td>
</tr>
<tr>
<td>Sideswipe</td>
<td>173</td>
<td>157</td>
<td>90%</td>
</tr>
<tr>
<td>Single Vehicle</td>
<td>142</td>
<td>138</td>
<td>97%</td>
</tr>
<tr>
<td>U-Turn</td>
<td>55</td>
<td>42</td>
<td>76%</td>
</tr>
<tr>
<td>Unknown</td>
<td>204</td>
<td>196</td>
<td>96%</td>
</tr>
<tr>
<td>Bike</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORIGINAL VALUE</th>
<th>TOTAL</th>
<th>REvised VALUE</th>
<th>PERCENT REvised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle</td>
<td>647</td>
<td>511</td>
<td>78%</td>
</tr>
<tr>
<td>Head On</td>
<td>83</td>
<td>60</td>
<td>72%</td>
</tr>
<tr>
<td>Hit Fixed Object</td>
<td>537</td>
<td>456</td>
<td>85%</td>
</tr>
<tr>
<td>Hit Non-Fixed Object</td>
<td>18</td>
<td>18</td>
<td>100%</td>
</tr>
<tr>
<td>Left Turn</td>
<td>489</td>
<td>413</td>
<td>85%</td>
</tr>
<tr>
<td>Rear End</td>
<td>1106</td>
<td>918</td>
<td>83%</td>
</tr>
<tr>
<td>Right Turn</td>
<td>69</td>
<td>55</td>
<td>80%</td>
</tr>
<tr>
<td>Run Off Road</td>
<td>84</td>
<td>63</td>
<td>75%</td>
</tr>
<tr>
<td>Sideswipe</td>
<td>173</td>
<td>157</td>
<td>90%</td>
</tr>
<tr>
<td>Single Vehicle</td>
<td>142</td>
<td>138</td>
<td>97%</td>
</tr>
<tr>
<td>U-Turn</td>
<td>55</td>
<td>42</td>
<td>76%</td>
</tr>
<tr>
<td>Unknown</td>
<td>204</td>
<td>196</td>
<td>96%</td>
</tr>
<tr>
<td>Bike</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>
IMPACT TYPE

<table>
<thead>
<tr>
<th>Reporting Agency</th>
<th>Reports Reviewed</th>
<th>Reports Revised</th>
<th>Percent Report Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSO</td>
<td>1,689</td>
<td>107</td>
<td>6%</td>
</tr>
<tr>
<td>FHP</td>
<td>1,603</td>
<td>90</td>
<td>6%</td>
</tr>
<tr>
<td>Naples PD</td>
<td>202</td>
<td>6</td>
<td>3%</td>
</tr>
<tr>
<td>Marco Island PD</td>
<td>60</td>
<td>4</td>
<td>7%</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

REVISED VALUE

- **Front to Rear**
 - Original Value: 1,135
 - Revised: 17
 - Percent Revised: 1%

- **Front to Front**
 - Original Value: 160
 - Revised: 25
 - Percent Revised: 16%

- **Angle**
 - Original Value: 1,071
 - Revised: 67
 - Percent Revised: 6%

- **Sideswipe (Same Direction)**
 - Original Value: 126
 - Revised: 9
 - Percent Revised: 7%

- **Sideswipe (Opposite Direction)**
 - Original Value: 37
 - Revised: 5
 - Percent Revised: 14%

- **Rear to Side**
 - Original Value: 13
 - Revised: 4
 - Percent Revised: 31%

- **Rear to Rear**
 - Original Value: 1
 - Revised: 0
 - Percent Revised: 0%

- **Unknown**
 - Original Value: 255
 - Revised: 5
 - Percent Revised: 2%

- **Other**
 - Original Value: 759
 - Revised: 75
 - Percent Revised: 10%
Appendix B: Revised Non-Motorized Crashes

EVENT RELATION TO INTERSECTION

<table>
<thead>
<tr>
<th>Reporting Agency</th>
<th>Reports Reviewed</th>
<th>Reports Revised</th>
<th>Percent Report Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSO</td>
<td>1,001</td>
<td>414</td>
<td>41%</td>
</tr>
<tr>
<td>FHP</td>
<td>292</td>
<td>33</td>
<td>12%</td>
</tr>
<tr>
<td>Naples PD</td>
<td>125</td>
<td>45</td>
<td>36%</td>
</tr>
<tr>
<td>Marco Island PD</td>
<td>64</td>
<td>25</td>
<td>39%</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>3</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Event Relation</th>
<th>Total</th>
<th>Non-Junction</th>
<th>Intersection</th>
<th>Intersection-Related</th>
<th>Driveway/Alley Access Related</th>
<th>Railway Grade Crossing</th>
<th>Entrance/Exit Ramp</th>
<th>Crossover-Related</th>
<th>Shared Use Path or Trail</th>
<th>Acceleration/Deceleration Lane</th>
<th>Through Roadway</th>
<th>Unknown</th>
<th>Other</th>
<th>Total Revised</th>
<th>Percent Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Junction</td>
<td>986</td>
<td>254</td>
<td>36</td>
<td>137</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>430</td>
<td>44%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection</td>
<td>229</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection-Related</td>
<td>82</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driveway/Alley Access Related</td>
<td>74</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railway Grade Crossing</td>
<td>0</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrance/Exit Ramp</td>
<td>4</td>
<td>0</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crossover-Related</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared Use Path or Trail</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>75%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceleration/Deceleration Lane</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Through Roadway</td>
<td>26</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>57</td>
<td>18</td>
<td>18</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>88%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CRASH TYPE

<table>
<thead>
<tr>
<th>REPORTING AGENCY</th>
<th>Reports Reviewed</th>
<th>Reports Revised</th>
<th>Percent Report Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSO</td>
<td>1,001</td>
<td>380</td>
<td>38%</td>
</tr>
<tr>
<td>FHP</td>
<td>291</td>
<td>12</td>
<td>4%</td>
</tr>
<tr>
<td>Naples PD</td>
<td>125</td>
<td>17</td>
<td>14%</td>
</tr>
<tr>
<td>Marco Island PD</td>
<td>64</td>
<td>28</td>
<td>44%</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>1</td>
<td>33%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORIGINAL VALUE</th>
<th>REVISED VALUE</th>
<th>TOTAL</th>
<th>PERCENT REVISED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle</td>
<td>42</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Head On</td>
<td>12</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Hit Fixed Object</td>
<td>79</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hit Non-Fixed Object</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Left Turn</td>
<td>22</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Rear End</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Right Turn</td>
<td>38</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Run Off Road</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sideswipe</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Single Vehicle</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U-Turn</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown</td>
<td>158</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Bike</td>
<td>587</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>465</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Collier County MPO | Local Road Safety Plan | 3-7
IMPACT TYPE

<table>
<thead>
<tr>
<th>Reporting Agency</th>
<th>Reports Reviewed</th>
<th>Reports Revised</th>
<th>Percent Report Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSO</td>
<td>1,001</td>
<td>679</td>
<td>68%</td>
</tr>
<tr>
<td>FHP</td>
<td>291</td>
<td>168</td>
<td>58%</td>
</tr>
<tr>
<td>Naples PD</td>
<td>125</td>
<td>39</td>
<td>31%</td>
</tr>
<tr>
<td>Marco Island PD</td>
<td>64</td>
<td>37</td>
<td>58%</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

REVISED VALUE

<table>
<thead>
<tr>
<th></th>
<th>Front to Rear</th>
<th>Front to Front</th>
<th>Angle</th>
<th>Sideswipe (Same Direction)</th>
<th>Sideswipe (Opposite Direction)</th>
<th>Rear to Side</th>
<th>Rear to Rear</th>
<th>Unknown</th>
<th>Other</th>
<th>TOTAL</th>
<th>REVISED</th>
<th>PERCENT REVISED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Value</td>
<td></td>
</tr>
<tr>
<td>Front to Rear</td>
<td>87</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>17</td>
<td>8%</td>
</tr>
<tr>
<td>Front to Front</td>
<td>35</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>24%</td>
</tr>
<tr>
<td>Angle</td>
<td>313</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>5%</td>
</tr>
<tr>
<td>Sideswipe (Same Direction)</td>
<td>41</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>7%</td>
</tr>
<tr>
<td>Sideswipe (Opposite Direction)</td>
<td>13</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Rear to Side</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8%</td>
</tr>
<tr>
<td>Rear to Rear</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>22%</td>
</tr>
<tr>
<td>Unknown</td>
<td>460</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>15</td>
<td>26</td>
<td>10</td>
<td>19</td>
<td>419</td>
<td>91%</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>514</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>350</td>
<td>24</td>
<td>46</td>
<td>7</td>
<td>1</td>
<td>468</td>
<td>91%</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 3: COMMUNITY SURVEY SUMMARY
Collier MPO
Local Road Safety Plan

Community Survey Summary

10/09/2020
Final

Prepared for

Prepared by
Table of Contents

Section 1: Introduction .. 1-1
Section 2: Key Takeaways .. 2-2
 Demographics and Travel Behavior .. 2-2
 Safety Concerns and Improvements .. 2-2
 Driving Habit Comparison between Aging and Younger Drivers .. 2-3
 Bike and Pedestrian Safety ... 2-4
Section 3: Traffic Safety Survey ... 3-1
 Survey Respondent Demographics ... 3-1
 General Traffic Safety ... 3-3
 Bicyclists and Pedestrians .. 3-6
Section 4: Additional Observations ... 4-1
 Summary of Concerns for Local Road Safety .. 4-1

List of Figures

Figure 1-1: Website Survey Post .. 1-1
Figure 3-1: Collier County Residence/Employment ... 3-1
Figure 3-2: Age .. 3-1
Figure 3-3: Home ZIP Code .. 3-2
Figure 3-4: Work ZIP Code ... 3-2
Figure 3-5: Travel Mode .. 3-3
Figure 3-6: Travel Destination ... 3-3
Figure 3-7: Driving Frequency .. 3-4
Figure 3-8: Travel Time .. 3-4
Figure 3-9: Travel Safety Concerns ... 3-5
Figure 3-10: Safety Improvement Support ... 3-5
Figure 3-11: Walk and Bike Frequency .. 3-6
Figure 3-12: Walking Frequency ... 3-6
Figure 3-13: Bike Safety .. 3-7
Figure 3-14: Pedestrian Safety .. 3-7
Figure 3-15: Traffic Rules Adherence .. 3-8
Figure 3-16: Driver Behavior ... 3-8
Figure 3-17: Bike Safety Improvement .. 3-9
Tables

Table 1-1: Travel Time.. 2-3
Table 1-2: Travel Frequency...2-3
Table 4-1: Intersections/Roadway Corridors in Need of Improvement...4-2
Table 4-2: Intersections/Roadway Corridors in Need of Bike and Ped Improvement.........................4-4

Appendix

Appendix A: Traffic Safety Survey... A-1
SECTION 1: INTRODUCTION

The Collier Metropolitan Planning Organization (MPO) is developing a Local Road Safety Plan (LRSP) with the goal of prioritizing opportunities to improve roadway safety, budget programs, and projects, develop highway safety strategies, and reduce the loss of life, injuries, and property damage while improving the performance and capacity of the county-wide street and highway network.

The purpose of the LRSP is to:

- Identify and define areas to improve the safety of Collier County’s streets and highways.
- Define strategies and projects, including improvements to infrastructure (Engineering); driver, bicycle, and pedestrian behavior (Education); law enforcement programs (Enforcement); and response of emergency medical services (Emergency Services).
- Identify federal, State, and local funding programs.
- Provide structure for evaluating the progress in reducing crashes and fatalities.

The plan development process includes data analysis, public outreach, and plan drafting. The data analysis step looked at the county’s motorized and non-motorized crash data from 2014 to 2018, and high-crash frequency locations, crash types, and roadway and weather conditions were reviewed. On August 20, 2020, a survey was sent out to capture the public’s input on how to minimize roadway fatalities and make Collier County road systems safer for residents and stakeholders. The survey was posted on the Collier MPO website and Facebook page, sent out to the MPO’s advisory committees and adviser network, and shared by WinkNews.
SECTION 2: KEY TAKEAWAYS

The survey was published in English and Spanish. Of 1,092 survey responses received, 1,060 were in English and 32 were in Spanish. Following are key takeaways from the survey.

Demographics and Travel Behavior

- A large number of survey respondents indicated that they either worked or lived in Collier County year-round, and a majority lived and worked in Naples and Immokalee. The top three home and work ZIP codes were as follows:
 - Home ZIP codes:
 - 34120 (Naples) – 186 participants
 - 34142 (Immokalee) – 146 participants
 - 34119 (Immokalee) – 84 participants
 - Work ZIP codes:
 - 34116 (Naples) – 129 participants
 - 34109 (Naples) – 93 participants
 - 34142 (Immokalee) – 77 participants
- More than two thirds of survey respondents were between ages 35 and 64.
- Survey respondents ranked driving, walking, and riding a bike as the top three most used modes of travel.
- Respondents ranked their top two destinations as “Retail Goods and Services” and “Work.” It is important to note that this survey was conducted during the COVID-19 pandemic during which most people were working from home.
 - In total, 75% of respondents drove a motor vehicle every day, with daily travel taking 30 minutes or more.

Safety Concerns and Improvements

- Of the 13 safety concerns indicated on the survey (see Appendix A, Question 5), respondents chose the following as their top three:
 - Drivers using cell phones or conducting other activities while driving
 - Speeding and aggressive driving
 - Aging drivers
- A large majority indicated support for “increased traffic enforcement” as a desired safety improvement, corresponding with one of the top safety concerns of aggressive driving. Other desired improvements were ranked as follows:
 1 – Increased traffic enforcement
 2 – Improved rural roads (e.g., wider shoulders, better signs, pavement markings)
 3 – Increased safety on major roads for pedestrians (e.g., better intersection design, marked crosswalks, better lighting)
4 – Better bicycle facilities, including wider bicycle lanes and separated bike paths
5 – Better roadway lighting
6 – Reduced speeds on major roads through design and traffic signalization strategies

Driving Habit Comparison between Aging and Younger Drivers

Further analysis of survey responses compared the driving habits of aging drivers (those age 55 and above) and younger drivers’ habits (those age 54 and below). Survey respondents included 40% aging drivers and 60% younger drivers. Following are some key takeaways:

- A large number of respondents in both age groups indicated that they drove a motor vehicle every day, and aging drivers (21%) indicated that they drove more than 4 times per week but not daily.
- A majority of drivers in both age groups spent at least 30 minutes traveling each day. A significant number of aging drivers, however, indicated that they spent less time traveling (20–30 minutes).
- Both age groups had opposite rankings for travel destinations. Aging drivers rated “Retail Goods and Services” as their top travel destination and “Work” as their second choice. Younger drivers ranked those two destinations the opposite, with “Work” as their top destination.
- Both groups indicated concern about different safety-related items. Younger drivers were concerned about “people who do not know the rules of the road” and “aging drivers,” and aging drivers were concerned about “speeding and aggressive driving” and “people using cell phones or doing other activities while driving.”

The following survey results support the above findings. Travel Time and Frequency

Table 2-1: Travel Time

<table>
<thead>
<tr>
<th>Response</th>
<th>Aging Drivers (Age 55+)</th>
<th>Younger Drivers (< Age 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td>Percentage</td>
</tr>
<tr>
<td>0–10 minutes</td>
<td>33</td>
<td>8%</td>
</tr>
<tr>
<td>10–20 minutes</td>
<td>96</td>
<td>23%</td>
</tr>
<tr>
<td>20–30 minutes</td>
<td>124</td>
<td>30%</td>
</tr>
<tr>
<td>30 minutes or more</td>
<td>163</td>
<td>39%</td>
</tr>
</tbody>
</table>

Table 2-2: Travel Frequency

<table>
<thead>
<tr>
<th>Response</th>
<th>Aging Drivers (Age 55+)</th>
<th>Younger Drivers (< Age 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td>Percentage</td>
</tr>
<tr>
<td>Daily</td>
<td>246</td>
<td>59%</td>
</tr>
<tr>
<td>2–4 times per week</td>
<td>69</td>
<td>17%</td>
</tr>
<tr>
<td>More than 4 times per week</td>
<td>87</td>
<td>21%</td>
</tr>
<tr>
<td>Once per week</td>
<td>14</td>
<td>3%</td>
</tr>
<tr>
<td>Less than once per month</td>
<td>1</td>
<td>0%</td>
</tr>
</tbody>
</table>

Mode of Travel
Question: How do you usually travel from place to place? (Rank from 1 to 6, with 1 being the most frequently used mode of transportation and 6 being the least used.)

Both age groups ranked their preferred modes of travel as the following:

- 1 – Drive
- 2 – Walk
- 3 – Bicycle
- 4 – Rely on others for rides
- 5 – Rideshare (e.g., Uber/Lyft)
- 6 – Bus

Travel Destination

Question: What is your usual destination when using your #1 ranked mode of transportation? (Rank from 1 to 5, with 1 being where you travel most often and 5 being where you travel least often.)

Younger drivers:

- 1 – Work
- 2 – Retail Goods and Services (e.g., shopping, dining out)
- 3 – Visiting friends/family
- 4 – School
- 5 – Medical Appointments

Aging drivers:

- 1 – Retail Goods and Services (e.g., shopping, dining out)
- 2 – Work
- 3 – Medical Appointments
- 4 – Visiting friends/family
- 5 – School

Top Three Safety Concerns

Question: Of the items below, which are your top three safety concerns about traveling in Collier County? (Choose three. See Appendix A, Question 5 for a full list.)

Younger drivers:

- 1 – People who do not know the “rules of the road”
- 2 – Aging drivers
- 3 – Speeding and aggressive driving

Aging drivers:

- 1 – Speeding and aggressive driving
- 2 – People using cell phones or doing other activities while driving
- 3 – People who do not know the “rules of the road”

Bike and Pedestrian Safety

- Almost half of respondents indicated that they walked and/or rode a bicycle less than once per month.
- Nearly one third of respondents (32%) indicated walking less than once per month, and another third (26%) walked daily.
When respondents were asked if they felt safe and comfortable while riding a bicycle in Collier County, half either strongly or somewhat disagreed.

More than half either strongly or somewhat agreed to feeling safe and comfortable while walking in Collier County.

Almost half of survey respondents agreed that Collier County pedestrians and bicyclists do a good job of following the rules of the road.

More than half of those surveyed expressed that Collier County drivers are not courteous about sharing the road with pedestrians and bicyclists.

Respondents indicated the following as the top three improvements they believed could be done to make bicycling safer in Collier County:

- More bicycle lanes that are physically separated from vehicle traffic
- Reducing distracted driving
- Making it easier to cross highways and high-speed streets
SECTION 3: TRAFFIC SAFETY SURVEY

Survey Respondent Demographics

Figure 3-1: Collier County Residence/Employment
Question: Please describe yourself by checking all that apply.

- I am a visitor to Collier County: 1%
- I own a business in Collier County: 10%
- I live in the region and visit Collier County for shopping and recreation: 8%
- I work in Collier County: 43%
- I live in Collier County for part of the year: 7%
- I live in Collier County year-round: 88%

Figure 3-2: Age
Question: What is your age?

- 18-24: 3%
- 25-34: 13%
- 35-44: 24%
- 45-54: 20%
- 55-64: 21%
- 65+: 18%
Figure 3-3: Home ZIP Code
Question: What is your home ZIP code?

Figure 3-4: Work ZIP Code
Question: What is your work ZIP code?
General Traffic Safety

Figure 3-5: Travel Mode

Question: How do you usually travel from place to place? (Rank from 1 to 6, with 1 being the most frequently used mode of transportation and 6 the least used.)

Figure 3-6: Travel Destination

Question: What is your usual destination when using your #1 ranked mode of transportation? (Rank from 1 to 5 with 1 where you travel most often and 5 where you travel least often.)
Figure 3-7: Driving Frequency

Question: How often do you drive a motor vehicle? (Select one.)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>75%</td>
</tr>
<tr>
<td>More than 4 times a week</td>
<td>14%</td>
</tr>
<tr>
<td>2-4 times a week</td>
<td>9%</td>
</tr>
<tr>
<td>Once a week</td>
<td>2%</td>
</tr>
<tr>
<td>Less than once a week</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Figure 3-8: Travel Time

Question: How much time do you typically spend traveling each day? (Select one.)

<table>
<thead>
<tr>
<th>Travel Time</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 minutes</td>
<td>5%</td>
</tr>
<tr>
<td>10-20 minutes</td>
<td>17%</td>
</tr>
<tr>
<td>20-30 minutes</td>
<td>22%</td>
</tr>
<tr>
<td>30 minutes or more</td>
<td>57%</td>
</tr>
</tbody>
</table>
Figure 3-9: Travel Safety Concerns
Question: Of the items below, which are your top three safety concerns about traveling in Collier County? (Choose three.)

- People who do not know the “rules of the road” 41%
- Inadequate roadway lighting or traffic signals 15%
- People using cell phones or doing other activities while driving 64%
- Teen drivers 5%
- Speeding and aggressive driving 59%
- Commercial vehicles operating on local roads 14%
- Motorcyclists 5%
- Aging drivers 43%
- People not wearing seatbelts 1%
- Pedestrians and bicyclists sharing the roadway 27%
- People driving under the influence of alcohol, drugs, etc. 23%
- Roadway design 18%

Figure 3-10: Safety Improvement Support
Question: What is your level of support for the following safety improvements? (Rank each from 1 to 5, with 1 being the most support and 5 being the least support.)

- Increased traffic enforcement 1,031
- Improving roadway lighting 977
- Improving rural roads (e.g. wider shoulders, better signs and pavement markings) 988
- Making major roads safer for pedestrians (e.g. improving intersection design, providing marked crosswalks, better… 982
- Providing better bicycle facilities including wider bicycle lanes and separated bike paths 980
- Reducing speeds on major roads through design and traffic signalization strategies 976
Bicyclists and Pedestrians

Figure 3-11: Walk and Bike Frequency
Question: How often do you walk and/or ride a bicycle? (Choose one.)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>17%</td>
</tr>
<tr>
<td>More than 4 times a week</td>
<td>7%</td>
</tr>
<tr>
<td>2-4 times a week</td>
<td>17%</td>
</tr>
<tr>
<td>Once a week</td>
<td>12%</td>
</tr>
<tr>
<td>Less than once a month</td>
<td>47%</td>
</tr>
</tbody>
</table>

Figure 3-12: Walking Frequency
Question: How often do you walk? (Choose one.)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>26%</td>
</tr>
<tr>
<td>More than 4 times a week</td>
<td>9%</td>
</tr>
<tr>
<td>2-4 times a week</td>
<td>19%</td>
</tr>
<tr>
<td>Once a week</td>
<td>15%</td>
</tr>
<tr>
<td>Less than once a month</td>
<td>32%</td>
</tr>
</tbody>
</table>
Figure 3-13: Bike Safety
Question: In general, I feel safe and comfortable while riding a bicycle in Collier County.

Figure 3-14: Pedestrian Safety
Question: In general, I feel safe and comfortable while walking in Collier County.
Figure 3-15: Traffic Rules Adherence
Question: In general, Collier County pedestrians and bicyclists do a good job following the rules of the road.

<table>
<thead>
<tr>
<th>Agreement Level</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly agree</td>
<td>9%</td>
</tr>
<tr>
<td>Somewhat agree</td>
<td>36%</td>
</tr>
<tr>
<td>Somewhat disagree</td>
<td>24%</td>
</tr>
<tr>
<td>Strongly disagree</td>
<td>24%</td>
</tr>
<tr>
<td>No opinion</td>
<td>7%</td>
</tr>
</tbody>
</table>

Figure 3-16: Driver Behavior
Question: In general, Collier County drivers are courteous about sharing the road with pedestrians and bicyclists.

<table>
<thead>
<tr>
<th>Agreement Level</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly agree</td>
<td>6%</td>
</tr>
<tr>
<td>Somewhat agree</td>
<td>32%</td>
</tr>
<tr>
<td>Somewhat disagree</td>
<td>31%</td>
</tr>
<tr>
<td>Strongly disagree</td>
<td>25%</td>
</tr>
<tr>
<td>No opinion</td>
<td>7%</td>
</tr>
</tbody>
</table>
Figure 3-17: Bike Safety Improvement

Question: What could be done to make bicycling safer in Collier County? (Choose three.)

<table>
<thead>
<tr>
<th>Option</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducing distracted driving</td>
<td>45%</td>
</tr>
<tr>
<td>Better enforcement of speed limits</td>
<td>24%</td>
</tr>
<tr>
<td>More education for motorists and bicyclists about sharing the roadway</td>
<td>25%</td>
</tr>
<tr>
<td>Start a bicycle sharing program</td>
<td>4%</td>
</tr>
<tr>
<td>More convenient and available bicycle parking</td>
<td>5%</td>
</tr>
<tr>
<td>Make it easier to cross highways and high-speed streets</td>
<td>32%</td>
</tr>
<tr>
<td>More low-speed neighborhood routes</td>
<td>12%</td>
</tr>
<tr>
<td>More multi-use paths</td>
<td>30%</td>
</tr>
<tr>
<td>More bicycle lanes that are physically separated from vehicle traffic</td>
<td>70%</td>
</tr>
<tr>
<td>More bicycle lanes</td>
<td>20%</td>
</tr>
</tbody>
</table>
SECTION 4: ADDITIONAL OBSERVATIONS

Summary of Concerns for Local Road Safety

Aggressive/ Careless Driving/ Speeding – Concerns raised by Collier County residents and stakeholders regarding aggressive driving include speeding and tailgating, high-speed lane changing, running red lights and stop signs, drivers not using indicator lights before lane change, and drivers traveling dangerously below the posted speed limit. Survey respondents noted that aggressive drivers make it unsafe for drivers obeying traffic laws and gave US-41 as an example of a roadway segment with excessive speeding.

Distracted Drivers – Distracted driving behavior includes using a cell phone either for a call or texting, loud music, and impaired driving under the influence of substances. Survey respondents suggested increased law enforcement for drivers that use cell phones while driving.

Law Enforcement – Survey participants indicated that increased enforcement is needed to crack down on high-speed drivers and cell phone users while driving.

Aging Drivers – Survey participants expressed that aging drivers have slower reaction times and drive below the speed limit, even in fast lanes. Participants suggested more frequent licensing retesting and better public transportation as options for aging drivers.

Traffic – Respondents indicated that there is traffic during AM and PM peak hours and during tourist seasons, noting that tourist season leads to overcrowding of roads, which slows down traffic and leads to accidents. Respondents provided examples of roadway systems that need immediate attention—Oil Well Road and the intersection of I-75 and Everglades Boulevard.

Bicyclist and Pedestrians – Respondents felt that bicyclists and pedestrians do not follow the rules of the road and that bike lanes are not fit for safe travel, indicating that bicyclists are ignored on the roadway. Suggestions included providing additional sidewalks for safer pedestrian travel and adding bike lanes to Vanderbilt Drive between 111th and Vanderbilt Beach Road.

Roadways/ Maintenance / Infrastructure – In general, survey participants were concerned about back roads being too small and that some landscapes are dangerous in that they act as an obstruction. They also pointed out that lack of traffic lights results in unsafe exiting and suggested adding more speed limit signs and improved infrastructure to combat high traffic volume. Examples noted were Immokalee Road being poorly lit and making it dangerous to drive at night and Oil Well Road needing maintenance and additional shouldering and lighting.

Miscellaneous – Some respondents commented that there were too many one-way roads and that additional education on driver safety is needed.
Table 4-1: Intersections/Roadway Corridors in Need of Improvement

Question: Please tell us if there is a specific roadway or intersection that you would most like to see improved.

<table>
<thead>
<tr>
<th>Street</th>
<th>Times Mentioned</th>
<th>@ intersection of</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immokalee Rd</td>
<td>133</td>
<td>Livingston Rd, Collier Blvd, Goodlette-Frank Rd, Golden Gate Pkwy, US-41, I-75, Northbrooke Dr, Randall Blvd, Tarpon Bay Blvd, Strand Blvd, Collier Blvd, Airport-Pulling Rd, Oil Well Rd, Pine Ridge Rd, Vanderbilt Beach Rd</td>
<td>N/A</td>
</tr>
<tr>
<td>Oil Well Rd</td>
<td>95</td>
<td>Camp Keais Rd, SR-29, Everglades Blvd, Ave Maria, Desoto Blvd, Immokalee Rd</td>
<td>• Lack of overall knowledge by drivers using them.</td>
</tr>
<tr>
<td>Pine Ridge Rd</td>
<td>75</td>
<td>Livingston Rd, US-41, Airport-Pulling Rd, Taylor Rd, Goodlette-Frank Rd, Santa Barbara Blvd</td>
<td>N/A</td>
</tr>
<tr>
<td>Golden Gate Pkwy</td>
<td>56</td>
<td>Collier Blvd, Goodlette-Frank Rd, Livingston Rd, Santa Barbara Blvd, Sunshine Blvd, Wilson Blvd, Pine Ridge Rd</td>
<td>N/A</td>
</tr>
<tr>
<td>Airport-Pulling Rd</td>
<td>56</td>
<td>Pine Ridge Rd, Davis Blvd, Immokalee Rd, Horseshoe, Naples Blvd, Orange Blossom, Golden Gate Pkwy</td>
<td>N/A</td>
</tr>
<tr>
<td>Collier Blvd/ CR-951</td>
<td>51</td>
<td>US 41, I-75, Immokalee Rd, Davis Blvd, Championship Drive, Golden Gate Pkwy, Pine Ridge Rd, Tamiami Trail</td>
<td>• Aggressive driving.</td>
</tr>
</tbody>
</table>
| US-41 | 35 | Goodlette-Frank Rd, Bayshore, Immokalee Rd, Mooring Line Dr, Vanderbilt Beach Rd, Immokalee Rd, 91st Ave, Airport-Pulling Rd, Davis Blvd | • Too many red light runners.
• People drive too fast.
• Excessive bushes and other flora in median is huge safety risk. |
| Randall Blvd | 20 | Everglades Blvd, Immokalee Rd, 8th Ave, 16th Ave, Desoto Blvd | • Randall Blvd needs better flow; light is very long.
• Needs more speed enforcement. |
| Livingston Rd | 18 | Immokalee Rd, Bonita Beach Rd, Osceola Trail, Golden Gate Pkwy, Osceola Trail, Learning Ln | • Accident zone.
• Need traffic lights. |
| SR-49 | 18 | SR 82 and Oil Well Rd | N/A |
| Davis Blvd | 17 | Airport, Corporate Cir, Brookside, Collier Blvd, Lakewood Blvd, Shadowland Dr | • So many potholes and bumps.
• How people have to turn and maneuver is an accident waiting to happen.
• Needs more traffic control. |
<p>| I-75 | 12 | Everglades Blvd, Immokalee Rd, Tamiami Trail, Golden Gate Pkwy | N/A |</p>
<table>
<thead>
<tr>
<th>Street</th>
<th>Times Mentioned</th>
<th>@ intersection of</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everglades Blvd</td>
<td>11</td>
<td>Immokalee Rd, Randall Blvd, Pine Ridge Rd</td>
<td>• Aggressive driving, confusion, dangerous situations for people driving in both directions, cyclists, and pedestrians.</td>
</tr>
<tr>
<td>DeSoto Blvd</td>
<td>5</td>
<td>Golden Gate Pkwy, Oil Well Rd</td>
<td>• Reduce congestion by providing other options for access to/from I-75.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Unbearable traffic congestion during morning rush hour and from 5:00–6:00 pm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Too many lights, traffic, speeding.</td>
</tr>
<tr>
<td>Goodlette-Frank Rd</td>
<td>4</td>
<td>Pine Ridge Rd, Golden Gate Pkwy, Frank Rd</td>
<td>• Traffic congestion, especially in season.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Red light runners.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Bad visibility.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Reckless driving.</td>
</tr>
<tr>
<td>Downtown Area/ 5th Ave</td>
<td>3</td>
<td>5th Ave</td>
<td>• Needs more lanes, too much traffic, Desoto Blvd needs left lane, more lighting, add medians.</td>
</tr>
<tr>
<td>10th St</td>
<td>2</td>
<td>US-41</td>
<td>• Additional lighting needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Add flyover at Airport-Pulling Rd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Need additional enforcement.</td>
</tr>
</tbody>
</table>
Table 4-2: Intersections/Roadway Corridors in Need of Bike and Ped Improvement

Are there specific intersections or roadway corridors that you think need safety improvements for bicyclists or pedestrians? (Indicate up to 3.)

<table>
<thead>
<tr>
<th>Street</th>
<th>Times Mentioned</th>
<th>@ intersection of</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Immokalee Rd | 93 | Camp Keais Rd, Corkscrew Sanctuary, Collier Blvd, Livingston Rd, Strand Blvd, Valewood Dr, US-41, I-75, Airport Pulling Rd, Juliet, Logan, Oil Well Rd, Pine Ridge Rd, Randall Blvd, Tamiami Trail, Gulf Coast High School, Wilson Blvd, Goodlette-Frank Rd, 1st St | • Immokalee should have a pedestrian bridge or tunnel. Entire road needs improvement, as it hosts bike tournaments.
• Immokalee Rd should not have bicyclists. |
| Pine Ridge Rd | 92 | Airport Pulling Rd, Livingston Rd, US-41, Collier Blvd, Logan, Vanderbilt Beach Rd, Whipoorwill, I-75, Orange Blossom, Naples Blvd, Goodlette-Frank Rd, SeaGate | • Pine Ridge Rd needs sidewalk improvements, they are so close to road; if someone were to get in accident and go into sidewalk and someone was walking, they would be dead. |
| US 41 | 90 | Collier Blvd, Lakewood Blvd, Bayshore, 91st, Airport Pulling Rd, Immokalee Rd, Ohio Rd, Pine Ridge Rd, Rattlesnake, Vanderbilt Beach Rd, Golden Gate Parkway, Fleishmann/Orchid, Neapolitan, Grenada, 5th Ave, 92nd Ave N, Davis Blvd, Goodlette-Frank Rd, Thomasson, Triangle Blvd, Fiddlers Creek, Courthouse, Wiggins Pass, 99th Ave | • Many sections of US-41.
• In front of St Mathews between Glades Blvd & Great Blue Dr. |
| Airport-Pulling Rd | 70 | Immokalee Rd, US-41, Davis Blvd, Orange Blossom, Pine Ridge Rd, Radio Rd, Vanderbilt Beach Rd, Golden Gate Parkway, Estey Ave, East Trail | • Along Airport-Pulling Rd near The Beach House; would be great to see bike trail go through woods to take bikers off Airport on their way to North Rd & Baker Park. VERY scary biking and walking along Airport Rd; jaywalking. |
| Collier Blvd/ CR-951 | 69 | Bald Eagle, Green, Livingston Rd, Barfield, Golden Gate Pkwy, Airport, US-41, 17th Ave SW, David, Immokalee Rd, Lely, Manatee Rd, Pine Ridge Rd, Tamiami Tr, Vanderbilt Beach Rd, Oakridge Middle School, Radio Rd | • Collier Blvd no place for bicyclists. |
| Oil Well Rd | 63 | Camp Keais Rd, SR-29, Desoto Blvd, Everglades Blvd, Immokalee Rd, Ave Maria, Everglades Blvd | • Improve roads for drivers commuting from Oil Well Rd to SR-29.
• Full bike lane on Oil Well Rd.
• Oil Well Rd should not have bicyclists.
• Two-lane section of Oil Well Rd dangerous for bikes. |
<table>
<thead>
<tr>
<th>Street</th>
<th>Times Mentioned</th>
<th>@ intersection of</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Vanderbilt Beach Rd | 52 | Airport Pulling Rd, Hammock Oak, Goodlette-Frank Rd, Livingston Rd, Tamiami, Gulf Shore, US 41 | • Pedestrians competing with bicyclists on Vanderbilt Rd for sidewalk space.
• Get bicyclists onto road and off sidewalks.
• No bike lane; they ride in middle of road.
• Vanderbilt and Livingston are great but more signs would be better. |
| Davis Blvd | 42 | US 41, Airport Pulling Rd, Collier Blvd, Radio Rd, Brookeside, Kings Lake Blvd, Rich King Memorial Greenway | N/A |
| Golden Gate Parkway | 42 | Livingston Rd, Airport Pulling Rd, Coronado, Goodlette-Frank Rd, Everglades Blvd, 53rd St. SW, Collier Blvd, Desoto Blvd, Santa Barbara Blvd, Max Hause Park, Wilson Blvd, I-75, Sunshine Blvd, US 41. | N/A |
| Livingston Rd | 25 | Bonita Beach Rd, Veterans, Airport Pulling Rd, Golden Gate Parkway, Pine Ridge Rd, Ravina Way, Vanderbilt Beach Rd, Immokalee Rd. | • Vanderbilt and Livingston are great but more signs would be better. |
| Randall Blvd | 23 | Wilson Blvd, 16th, Immokalee Rd, 8th St. NE, Everglades Blvd, Desoto Blvd. | N/A |
| Everglades Blvd | 21 | Oil Well Rd, Golden Gate Parkway, and Randall Blvd | N/A |
| Gulf Shore Blvd | 19 | Blue Hill/Immokalee Rd, Vanderbilt Beach Rd, 5th Ave North, Central Blvd, Gordon Drive | • People bike at night and without lights; difficult to see them; if car coming on opposite side. lights blind you.
• You are doing a great job with downtown Naples, but Gulfshore Blvd is still a death trap. |
| Goodlette-Frank Rd | 15 | Vanderbilt Beach Rd, Golden Gate Parkway, Orange Blossom, Pine Ridge Rd, US 41 | N/A |
| Tamiami Trail | 12 | Davis Blvd, 5th Ave, Collier Blvd, 7th Ave North, 111th, and Palm Drive. | N/A |
| Wilson Blvd | 12 | Golden Gate Parkway and Immokalee Rd. | N/A |
| Radio Rd | 11 | San Marco Blvd, Countryside Drive, Livingston Rd, Santa Barbara Blvd. | • Have seen several severe accidents by people making left off Radio to get into Countryside—very dangerous, bad visibility. |
| Brookside Drive | 10 | Davis Blvd, Estey Ave, Oakes Parking Lot, Harbor Lane, and Holiday | N/A |
| Pelican Bay Blvd | 10 | Gulf Park Drive, US 41, and Vanderbilt Beach Rd | N/A |
Appendix 3: Traffic Safety Survey

General Traffic Safety Survey

1. How much time do you typically spend traveling each day (Choose one)
 - 0-10 minutes
 - 10-20 minutes
 - 20-30 minutes
 - 30 minutes or more

2. How do you usually travel from place to place? (Rank from 1-5 with 1 being the most frequently used mode of transportation and 5 is the least used)
 - Walk
 - Bicycle
 - Drive
 - Bus
 - Rideshare (e.g. Uber/Lyft)
 - Rely on others for rides

3. What is your usual destination when using your #1 ranked mode of transportation (Rank from 1-5 with 1 being where you travel most often and 5 being where you travel least often)
 - Work
 - School
 - Retail Goods and Services (e.g shopping, dining out)
 - Medical Appointments
 - Visiting Friends/Family

4. How often do you drive a motor vehicle (Choose one)
 - Daily
 - More than 4 times a week
 - 2-4 times a week
 - Once a week
 - Less than once a month

5. Of the items below, which are your top three safety concerns about traveling in Collier County (Choose three)
 - Roadway design
 - People driving under the influence of alcohol, drugs, medications or other substances
 - Pedestrians and bicyclists sharing the roadway
 - People not wearing seatbelts
 - Aging drivers
 - Motorcyclists
 - Commercial vehicles operating on local roads
 - Speeding and aggressive driving
 - Teen drivers
• People using cell phones or doing other activities while driving
• Inadequate roadway lighting or traffic signals
• Construction or utility work zones
• People who do not know the “rules of the road”

In your own words, what is your biggest concern for local road safety in Collier County? __________

6. What is your level of support for the following safety improvements? (Rank each from 1 to 5, with 1 being the most support and 5 being the least support)
• Reducing speeds on major roads through design and traffic signalization strategies
• Providing better bicycle facilities including wider bicycle lanes and separated bike paths
• Making major roads safer for pedestrians (e.g. improving intersection design, providing marked crosswalks, better lighting
• Improving rural roads (e.g. wider shoulders, better signs and pavement markings)
• Improving roadway lighting
• Increased traffic enforcement

7. Please tell us if there is a specific roadway or intersection that you would most like to see improved.

Bicyclists and Pedestrians

8. How often do you walk and/or ride a bicycle? (Choose one)
• Daily
• More than 4 times a week
• 2-4 times a week
• Once a week
• Less than once a month

9. How often do you walk? (Choose one)
• Daily
• More than 4 times a week
• 2-4 times a week
• Once a week
• Less than once a month

10. In general, I feel safe and comfortable while riding a bicycle in Collier County. (Choose one)
• Strongly agree
• Somewhat agree
• Somewhat disagree
• Strongly disagree
• No opinion

11. In general, I feel safe and comfortable while walking in Collier County. (Choose one)
• Strongly agree
12. In general, Collier County pedestrians and bicyclists do a good job following the rules of the road. (Choose one)
- Strongly agree
- Somewhat agree
- Somewhat disagree
- Strongly disagree
- No opinion

13. In general, Collier County drivers are courteous about sharing the road with pedestrians and bicyclists. (Choose one)
- Strongly agree
- Somewhat agree
- Somewhat disagree
- Strongly disagree
- No opinion

14. Are there specific intersections or roadway corridors that you think need safety improvements for bicyclists or pedestrians? (select up to three)

15. What could be done to make bicycling safer in Collier County. (Choose three)
- More bicycle lanes
- More bicycle lanes that are physically separated from vehicle traffic
- More multi-use paths
- More low-speed neighborhood routes
- Make it easier to cross highways and high-speed streets
- More convenient and available bicycle parking
- Start a bicycle sharing program
- More education for motorists and bicyclists about sharing the roadway
- Better enforcement of speed limits
- Reducing distracted driving

Demographic and Contact information

16. Please describe yourself by checking all that apply
- I live in Collier County year-round
- I live in Collier County for part of the year
- I work in Collier County
- I live in the region and visit Collier County for shopping and recreation
- I own a business in Collier County
- I am a visitor to Collier County
17. What is your age range
 • 18-24
 • 25-34
 • 45-54
 • 55-64
 • 65+
18. What is your home ZIP code? _________
19. What is your work ZIP code? _________
20. If you would like to be contacted to provide input on future Collier County roadway safety survey programs and initiatives, please provide your preferred contact information below.
 Name: _________
 Address: _________
 Phone: _________
 Email: _________
New Table on Strategies with Current and Enhanced Practice Added

<table>
<thead>
<tr>
<th>Infrastructure Strategies</th>
<th>Current Practice</th>
<th>Enhanced Practice - Infrastructure Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1. Flag high crash locations to incorporate safety analysis in project planning and design for road improvement projects and state share bikeway facility projects.</td>
</tr>
<tr>
<td>Speed Management (under 45 mph)</td>
<td>County installs speed bumps at 45 mph; County installs & enforces speed management boards.</td>
<td>2. Flag high crash locations for Road Safety Assess using MPO SDI safety set-aside and/or state, federal funds. BMPF always does this.</td>
</tr>
<tr>
<td>Alternative Interventions (ICE Process)</td>
<td>County follows ICE process without having formally adopted it.</td>
<td></td>
</tr>
<tr>
<td>Intersection Group Best Practices for Pedestrians</td>
<td>Incorporates MPO Bike/Ped Master Plan Guidelines & Local Agency plans, etc.</td>
<td></td>
</tr>
<tr>
<td>Meander Restrictions/Access Management</td>
<td>County Growth Management Plans (GMP) & Land Development Codes (LDC)</td>
<td></td>
</tr>
<tr>
<td>Right Turn Lanes</td>
<td>County channels when ROW available</td>
<td></td>
</tr>
<tr>
<td>Signal Coordination</td>
<td>City of Naples & County Traffic Ops manages for congestion</td>
<td></td>
</tr>
</tbody>
</table>

Rural Road Strategies including:

- Paved shoulder
- Safety edge
- Curve geometry, delineation, and warning
- Bridge/obstruct widening/alteration
- Guardrail/highway, roadside trees
- Island/intersection controls, etc.
- Shared Use Pathways, Sidewalk Improvements (example: MPO BMPF & Local Agency Plans and rest rooms)
- Bike/Bus Crossings & Median Refuge (example: MPO BMPF & Local Agency Plans and rest rooms)
- Intersection Lighting Enhancements (example: MPO BMPF & Local Agency Plans and rest rooms)
- Autonomous Vehicles (Longer Term) (example: TSD)

Notes: Strategy Implementation is feasible based on existing conditions.
<table>
<thead>
<tr>
<th>Non-Infrastructure Strategies</th>
<th>Current Practice</th>
<th>Enhanced Practice - Non-Infrastructure Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Enforcement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Targeted Speed Enforcement</td>
<td>County Sheriff's Office does this now</td>
<td></td>
</tr>
<tr>
<td>• Red Light Running Enforcement</td>
<td>County Sheriff's Office does this now</td>
<td></td>
</tr>
<tr>
<td>• Automated Enforcement</td>
<td>County installed and studies results of red light cameras - results inconclusive in terms of safety</td>
<td></td>
</tr>
<tr>
<td>• Pedestrian Safety Enforcement</td>
<td>County Sheriff's Office does this now</td>
<td></td>
</tr>
<tr>
<td>Bike Light and Retroreflective Material - Give-Away</td>
<td>Can only fund with local and/or NITSA funds; MPO does not receive NITSA funds, minimal local funding, implement strategy through FDOT give-aways, and non-profit organizations funnelling & share</td>
<td></td>
</tr>
<tr>
<td>Young Driver Education</td>
<td>FDOT, DMV, nonprofits offer webinars now</td>
<td></td>
</tr>
<tr>
<td>WalkWise/BikeSmart or Similar Campaign</td>
<td>Blue Zones is hosting the Community Traffic Safety Team and is forming informal coalition referred to as Naples Bike Ped Safety Coalition (NPCODE, Naples Velo, Blue Zones, CTST, MPO & agency partners) to promote safety videos, training, & enforcement campaigns.</td>
<td>3. Promote BP safety videos, hawcocks and special events more proactively as part of CTST / Blue Zones Bike Ped Safety Coalition</td>
</tr>
<tr>
<td>Continuing Education</td>
<td>MPO contributes information on FDOT safety webinars to training opportunities</td>
<td></td>
</tr>
<tr>
<td>Safety Issue Reporting</td>
<td>County's 311 system addresses this</td>
<td></td>
</tr>
<tr>
<td>Vision Zero Policy</td>
<td>MPO has adopted FDOT Vision Zero Safety Measures & Targets; reinforces through project prioritization, formalized in LRTP, LESP, TFRP, and TIP</td>
<td></td>
</tr>
</tbody>
</table>