
TM-3 District One Regional Model

Technical Resource Guide

February 2016

TABLE OF CONTENTS

1.	Introduction	1
	About Cube / Voyager	1
	The Scenario Manager	1
	The Applilcation Manager	4
	Running the Model	. 5
	Run Time	. 8
	Hardware Requirements	. 8
	Cube Cluster	. 9
2.	[START]	11
3.	The Network-Step	12
3.	The Airiport-Step	15
	The Enplanement Estimation Spreadsheet	
	The AIRTRIPS program	
4	The Freight Step	21
5.	Trip Generation	23
	Addressing Unemployment	
	External Trips	
6.	Trip Distribution	31
7.	The TRANSITMODEL	33
	Transit Prep Step	
	Transit Path Step	
	Mode Choice	37
	Understanding Mode Choice Theory and Application	38
	The Transit Assignment Step	
	Average Fare Calculations	43
8.	The Highway Assignment Step	47
	Diurnal Factors	. 47
	Highway Assignment	. 48
9.	Post Process	51
10	Link Data Description	. 57

This report: "*TM-3 D1RPM Technical Resource Guide*" gives technical users / model developers with a more detailed review of certain critical steps (and associated scripts) within the model and discusses mode choice theory and application. Companion reports, "*TM-1 Executive Summary of the D1RPM Validation*" provides an overall review of the model and summary statistics for the validation year of 2010;.and, "*TM-2 Introduction to the D1RPM and Validation Report*" reviews of the model's development, discusses the structure of the model within CUBE/Voyager environment, and contains summary statistics for the validation year of 2010. These reports are included in the model's \documentation folder.

Introduction

This document is not intended to replace FSUTMS class training, nor is it designed to function as a CUBE scripting class. This report is supplemented with additional documents from the TMU model project and the TRANSITMODEL development and setup. These are contained in the folders: \documentation\reference\TMU and \documentation\reference\AECOM, respectively.

The resulting D1RPM model is complex with many processes and program steps (see box below). This document will discuss all of these program steps, with particular emphasis placed on features that are unique to the D1RPM. Please take notice of : SPECIAL NOTICE tags throughout the text.

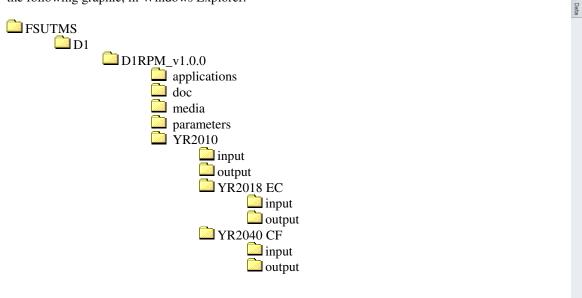
PROGRAM BOXES / STEPS IN THE D1RPM MODEL *												
main page	program boxes	subroutines	program boxes	subroutines	program boxes	aubroutines	program boxes	subroutines	program boxes	subroutines	program boxes	runtime **
Model Start	1											:01
Network	6											1:56
Airports	9											:45
Trucks	3											:19
Tripgen	15	Marginal Models	3									3:18
Feedback	1											:01
Distrib	10											2:51
Transitmodel	3	Transit Prep	18	Transit Path	14	Station Rpt	5					21:29
Mode Choice	27											1:07:13
Transit Assignment	12	Transit Rpt	3	Assignment Rpt	5							3:16
Diurnal Factors	6											14:04
Highway Assignment	18	AM	15	MD	15	PM	15	NT	15			1:30:31
Postprocess	12	Screenlines	7	Urban Heval	16	Rural Heval	14	Corridor Rpt	4	TOD Count Rpt	8	7:23
Model End	4											:014

* the D1RPM model contains 630 lines of CUBE/Voyager script

** runtime is dependent on the number of clusters (cores) utilized and CPU clockspeed. Times shown are for a 4-core laptop (I7) running at 2.70GHz

About Cube / Voyager

Development of the model was achieved within the CUBE/Voyager transportation planning environment, version 6.1.0 which incorporates a new auto-access-to-transit procedure. This means that <u>the model will NOT run in earlier versions of CUBE</u>. A Windows based program, CUBE uses a graphical user interface (GUI) whereby a mouse-click or a function key, activates a "pop up" menu from which the user chooses options to run the model. Programs and features are documented within CUBE/Voyager and on-line classes are available at FDOT's internet site: www.fsutmsonline.com.


To understand how this model is structured may be helpful to review the CUBE Scenario Manager, the CUBE Application Manager and some job control and command structure. The basis of Cube scenario management is the Catalog which contains information on what applications you want to run, and certain parameters which will be used by the applications within the model.

The Scenario Manager

The purpose of Scenario Manager is to allow a model to be conveniently executed with many alternatives, but using the same model structure -- allowing the user to compare several different scenario's. For example: the graphic shows a validation year, a existing-plus-committed year, and a cost-feasible future year alternative -- all running in the same model structure.

The Manager may contain many Scenario's and each Scenario will have its own sub-folders, a hierarchical structure is assumed. What this means is that: when a model alternative is made (within CUBE) model "Keys" and other parameters are automatically copied

from the "parent" to the "child", the user does not have to re-enter all of this data for each scenario, it will be retained in the model's catalog file D1RPM_100.CAT. This hierarchical structure will look like the following graphic, in Windows Explorer.

Note: When an alternative is created CUBE will create an empty folder, the user will still need to make a copy the *input folder* from the "parent" and copy this to the "child" before making edits to input networks or data files.

The following datasets must be prepared for each alternative and placed in the alternative's INPUT folder:

	r
EETRIPS_10A.DBF	external-to-external trip table
HNET_10A.DBF	highway network
INTEXT_10A.DBF	internal-to-external trip table
PCWALK_10A.DBF	percent of TAZ within short-walk and long-walk access
SPECGEN_A_10A.DBF	special generator attractions
SPECGEN_B_10A.DBF	special generator productions
STATREP_10A.DBF	transit station reports for a station #
TFARES_10A.DBF	transit fares
TROUTE_10A.DBF	transit routes
TURN_10A.DBF	turn prohibition's and turn penalty's
ZONEDATA_10A.DBF	socioeconomic data

View

₽

Home

🊈 📼 🔻

-- PRE TRANSIT PREP -- PRE TRANSIT PATHS

Marginal Models

DISTRIBUTION

− Transit Prep
 Transit Paths

MODE CHOICE

DIURNAL FACTORS

POST PROCESSING
 SCREENLINES
 URBAN HEVAL
 RURAL HEVAL
 CORRIDORS
 TOD COUNTS

- HIGHWAY ASSIGNMENT

AM HIGHWAY ASSIGNMENT

PM HIGHWAY ASSIGNMENT

NT HIGHWAY ASSIGNMENT

STN2STN

Fie

....

App

PT Tier A Mode

Tier A Mode

NETWORK

Scenario

YR2018 EC

YR2040 CF

AIRPORTS

HTRK

In addition, the following datasets must be available for <u>all</u> alternatives and placed in the model's PARAMETERS folder. **Note**: these files are used for model calibration, and should NOT be changed.

Network SPDCAP.dbf VFACTORS.CSV

speed/capacity lookup BPR curve lookup

attraction rates

Trip Generation ATTRRATES.dbf DUWEIGHTS.dbf GENRATES.DBF GENRATESNP.DBF HHINCOME_Lookup.dbf HHSeed.csv HHSIZE_Lookup.dbf HHWORKER_Lookup.dbf NonWork_PRates.dbf PRODRATES.dbf Work_PRates.dbf FLCOUNTY.DBF

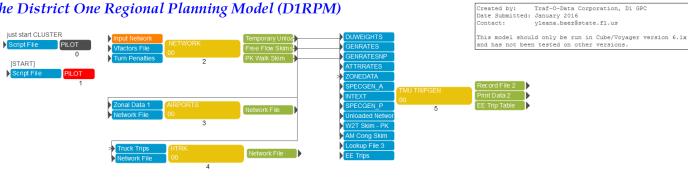
Trip Distribution FF.dbf trip length impedances/purpose

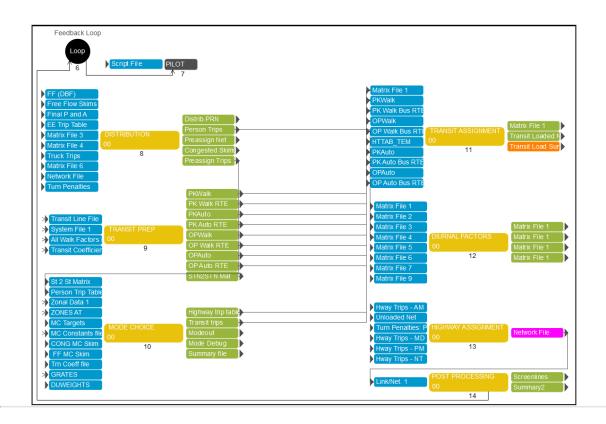
Mode Choice
AllWalk.FAC
AutoBus.FAC
AutoProj.FAC
AutoTransit.FAC
COEFF_AUTOOWN.DBF
MC_CONSTANTS.DBF
MC_DUWEIGHTS.DBF
MC_GRATES.DBF
MC_TARGETS.DBF
TRAN_COEFF.DBF
TRN_COEFFICIENTS.DBF
TSYSD.PTS
WalkBus.FAC
WalkProj.FAC
WalkTransit.FAC

Assignment Diurnal_Fac_tmu.dbf rate-permanent pop: person/autos/household rate-seasonal pop: person/autos/household index households by income random number seed generation index by household size index by workers/household index by income/autos/persons/purpose rate-seasonal pop: person/autos/household rate by income/autos/persons/purpose county identifier lookup

dwelling unit class: trips/household

program setup program setup program setup auto ownership coefficients mode constants rate: trips/household rate: person/autos/household calibration targets/purpose calibration targets/mode transit modes & operators socioeconomic data socioeconomic data


trips/period/purpose


The Application Manager

Application Manager provides a graphical view of the model processes, as shown on the following page.

Tasks flow from one process to another, in the numerical sequence shown.

The District One Regional Planning Model (D1RPM)

Running the Model

When ready to run a model, users are presented with a series of "KEYS" variables that may be changed by the user. There may be several pages of variables, depending on whether or not the user is in *Applier mode* or *Developer mode*:

(Applier/Developer mode, page 1).

CG DIRPM_101	A 1 LOT 1 - House Hand Have	Cube (Licensed to TRAF-O-DATA CORP)	
	A REPORT A DAMAGE		♥ 🕜
			Ť
Scenario P	🔯 Tier_A.app, PT Tier A Model (Scenario 'Y 🗴 🧧 Scenario - YR20	10 (Application PT Ter A X	
E-YR2010			
YR2018 EC	Application:	PT Tier A Model	
- YR2040 CF	number of processor cores to use for this model run	4	
	Alternative Information		
	Alternative Letter:	A	
	Model Year:	10	
Data P	Description:	2010 Base Year Validation	
- Inputs - Inputs - Inputs	Total number of internal zones:	5628	
- B Reports	Total number of all zones (including externals):	5662	
	Report on the following Corridor or Roady	vay	
	Check box for the following select-link or select-node analy		
	Select1	N=5656	
App	Check box for the following select-link or select-node a		
E PT Tier A Model	Select2	N=5657	
B. SELECT ASSIGNMENT	Check box for the following select-link or select-node a		
	Select3	N=5658	
	Name of 1st Corridor/Roadway	CR 865	
	Name of 2nd Corridor/Roadway	CR 951	
{} Keys P	Airport procedure		
Key Value 🔺	SRQ node	4967	
Scen. Name YR2010	SRQTRIPS	3350	
cores 4	SRQE	0.05	
AlternativeInfo (Note)	SRQS	0.075	
Alt A	SRQN	0.40	
year 10	RSWTRIPS	21850	
DESC 2010 Base Year Val	RSWN	.09	
ZONESI 5628	RSWE		
ZONESA 5662	RSW node	.33 2969	
HEADER4HEVA (Note)	KSW Houe	6063	
SelectQ1 0			
Select1 N=5656			
SelectQ2 0		Save Close Next Back Run	
Select2 N=5657			
SelectQ3 0			
Select3 N=5658			
CSORT1 CR 865 -			
< Ⅲ →			
Cube (Licens	TM-2 D1RP	· 2 年 ·	9:38 AM 2/26/2016
			2/20/2010

(Applier/Developer mode, page 2).

CG D1RPM_101	COLUMN TO AND ADDRESS AND ADDRESS ADDRES		Cube (Licensed to TRAF-O-DAT	A CORP)			_ 0 _ X _
SCENARD	·····································						♥ 🕜
🗀 🗟 🖉 * 🗇 🎢 🧮 🔻							
🗧 Scenario 🛛 🖗	🗾 Tier_A.app, PT Tier A Model (Scenario 'Y 🗴 🧧 Scenario - YR201	0 (Application PT Tier A ×					- ×
E-YR2010	Application:						
- YR2018 EC - YR2040 CF	Application:	PT Tier A Model		-			
	TAZ Identifiers						
	PolkTAZ	1					-
	DeSotoTAZ	730					
Data P	GladesTAZ	857					
	HardeeTAZ	924					
- California Inputs	HendryTAZ	1081					
	Highlandstaz	1231					
	OkeechobeeTAZ	1433					_
	CollierTAZ	1577					-
	LeeTAZ	2472					-
App	CharlotteTAZ	4065					-
B- PT Tier A Model	SarasotaTAZ ManateeTAZ	4414 5102					
B SELECT ASSIGNMENT	Manateer A2	12102					
L							
() Keys							
Key Value 🔺							
Scen. Name YR2010							
cores 4							
AlternativeInfo (Note)							
Alt A							
year 10							
DESC 2010 Base Year Val							
ZONESI 5628							
ZONESA 5662 HEADER4HEVA (Note)							
SelectQ1 0							
Select1 N=5656							
SelectQ2 0		1	Save Close Next.	Back Rut	n _		
Select2 N=5657		L					
SelectQ3 0							
Select3 N=5658							
CSORT1 CR 865 -							
4 III +							
	-						
							9:40 AM
Cube (Licens	TM-2 D1RP					- 🖬 🏲	() all 2/26/2016
							2/20/2010

D1RPM TM-3

Note: at this point Appliers will mouse-click the "RUN" button to start the model.

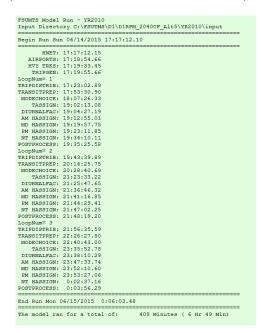
(Developer mode, page 3).

C DIRPM_101	Cube (Licensed to TRAF-O-DATA CORP)	
File Scenario	2.2. Satisfies a franchised and a 12 and a 2 and a	♥ 🕜
📴 🖬 🕼 • 🔿 🐐 🥅 =		
🗧 Scenario 🕴 🚾 Tier_A.app, PT Tier A Model (Scenario 'Y 🗙 🗾 Scenario - YR.2	110 (Application PT Ther A ×	* X
Trip Generation		
Max number of IPF zonal Iterations	15	
IZZONE	3	
ipftol	0.05	
How many zones should be averaged to calculate intrazonal		
Maximum Iterations for Gravity Model:	24	
Maximum Preassign Iterations:	99	
Highway Assignment		
RELATIVE GAP	0.001	
Assigniters	250	
B RADY VCMAX	4.0	
E: SELECT ASSIGNMENT Coefficient of Toll	0.1	
Type of Queue Model	Multiple Server Queue Model	
CTOLLSCALE	60	
DAMPINGFACTOR	0.5	
CapFac_AM	3	
CapFac_MD	7	
Key Value CapFac_PM	4	
Scen. Name YR2010 E CapFac_NT	8	
cores 4 Transit and Mode Choice		
AlternativeInfo (Note) IsAutoAcces:		
Alt A		
year 10 Calibrate Mode Choice		
DESC 2010 Base Year Val Debug Mode Choice		
ZONESI 5628 C8D zone to to be used by AUTOCON program	352	
ZONESA 5662 Average Walking Speed (MPH)	2.5	
NODEMIN 6000 Maximum Walk Travel Distance to Transit (in miles)	0.5	
PENSET 1 Maximum Walk Transfer Travel Distance (in Miles):	0.25	
HEADER4HEVA (Note)		
SelectQ1 0	Save Close Next Back Run	
Select1 N=5656		
SelectQ2 0		
Select2 N=5657		
SelectQ3 0		
3 Cube (Licens. TM-2 D1RP. TM-3 D1RP.	· 推下)) atl 9:46 AM 2/26/2016

(Developer mode, page 4).

C6 D1RPM_101	ATTACK CONTRACTOR	Cube (Licensed to TRAF-O-DATA CORP)	_ 0 _ X
File Scenario	A Provide a second second		♡ 🍞
🖻 🗐 🏈 * 🖓 🧖 =			
Scenario P	7 🚺 Tier_A.app, PT Tier A Model (Scenario 'Y 🛪 🔣 Scenario - YR2	0.10 (Application PT Tier A ×	+ X
F- YR2010			
	Maximum Number of Walk Access Links per Zone	99	
	Highway Operating Cost/Mile	9.5	
	HBW 3+ Persons Auto Occupancy	3.37	
	HBO 3+ Persons Auto Occupancy	3.49	
	NHB 3+ Persons Auto Occupancy	3.59	
🕞 Data 🛛 🖗	Value of time in \$/hr	6	
🕀 🔁 Inputs	Park and ride auto occupancy factor	1.2	_
🕀 🔤 Outputs	KNR auto occupancy factor	1.2	_
- Carl Reports	SelOrigin	137	_
	SelDest	136	
	AVGWALK	.25	_
	MINPCW	15	_
App P	FromNode	117	_
B PT Tier A Model	ToNode	139	_
B SELECT ASSIGNMENT	OCCPNRAccess	1.2	_
	MinDistWalkAcc	0.6	- 1
	MinDistAutoAcc	1.2	_
	HOVMIN	3	_
	OCTA	1.2	_
{} Keys	OCCKNRAccess	1.2	_
Key Value	FBTimeConv	0.20	_
Scen. Name YR2010	FBVolConv	0.20	- 1
cores 4	Cost inflation	1	_
AlternativeInfo (Note)	Inflation in auto operating cost	a	_
Alt A	Inflation in parking cost	A	_
year 10	InflationParkCost	*	- 1
DESC 2010 Base Year Val	InflationToll		- 1
ZONESI 5628	Terminal Time for CBD areas		
ZONESA 5662	Terminal Time for CBD Fringe areas		_
NODEMIN 6000	Terminal Time for Residential areas		_
PENSET 1	Terminal Time for Outlying Business Districts		_
HEADER4HEVA (Note)	Terminal Time for Outying Business Districts	²	_
SelectQ1 0		Save Close Next Back Run	
Select1 N=5656			
SelectQ2 0			
Select2 N=5657			
SelectQ3 0 +			
4 III >			
🚯 🚾 Cube (Licens 🕻	M TM-2 D1RP	* #	9:48 AM 2/26/2016
			-,,

(Developer mode, page 5).


C6 D1	1RPM_101	10.00 Complete Manual Real	Cube (Licensed to TRAF-O-DATA CORP)	
File	Scenario	イー・・ 東京市営業会長を行った。	A State of the Association and the A state of the A State of the A State of the Association of the Associ	~ 🕜
🗀 🗔 🥥 • 🖓 🐴				
Scenario	ņ	Tier_A.app, PT Tier A Model (Scenario 'Y 🗴 🧧 Scenario - YR20	110 (Application PT Ther A X	+ X
	0	Terminal Time Rural areas Bartyactivity Rural Status Rural Status Rura	1 1609 0.733 0.522 0.522 0.522 0.522 0.522 0.699 0.0419 0.109 1	
cores 4 AlternativeInfo (Not Alt A year 10	2010 E hts) 10 Base Year Val 28 52			
SelectQ2 0	5656 5657 •		Sove Cose Mont Bad Run	
7	Cube (Licens	TM-2 D1RP 🗰 TM-3 D1RP	A # A	9:49 AM 2/26/2016

When running, the user is presented with a Task Monitor progress bar, then, the Run Result box.

Task Monito	r - Tier_A.TRF	The real	* 101				
File View Se	ttings Help						
	<u>?</u>						
Application	Status						
Catalog:	C:\FSUTMS\Alt6_ER_8-12-15\D1RPM_TOD.cat						
Scenario:	YR2010						
Application:	PT Tier A Model, 00						
Group:	INETWORK.00 PRE TRANSIF PREP, 00 PRE TRANSIF PATHS, 00 AIRPORTS.00 HTRK.00				* III *		
Program Sta	itus						
Program:	HIGHWAY (Version 6.1.1)						
Description:	Build Highway Paths/Skims						
Group Execut	ion Order: 4 of 7						
Task:	1 Zone 800		Task Ru	un Result			X
		-					
				VOYAGER Run of Application PT	Tier A Mode	l, 00 is complete	
		-		ОК	View F	Run Report File	
Ready							

Run Time

The following 'runtime' report details the model's timeline on a typical laptop computer: (4 core I-7CPU @ 2.7GHz with 8GB RAM).

Hardware Requirements

You may also wish to compare your computer to Citilab's Recommended Workstation Configuration:

Cube 6 | HELP

Introduction > Minimum system requirements > Recommended Workstation Configuration

Recommended Workstation Configuration

Hardware	Requirements
CPU Speed	Minimum: 1.5 GHz single core
	Recommended: 2.0 GHz dual-core or higher
	With Cluster: 2.0 GHz quad-core or higher
Processor	Minimum: Intel Pentium 4, AMD AthIon
	Recommended: Intel Core 2, i5, i7; Intel Xeon; AMD Phenom, II; AMD Athlon II
Memory/RAM	1 GB minimum, 4 GB or higher recommended
	With Cluster: 2GB per core recommended
Hard Disk	Minimum: ATAPI IDE; 5,400 rpm
	Recommended: SATA 3 Gb/s or SATA 6 Gb/s; 7,200-10,000 rpm
Hard Disk Space	10 GB for the application and supporting applications and data (like GIS)
	100+ GB for output files
Screen Resolution	Minimum: 1024 x 768 higher at Normal size (96dpi); 24 bit color depth
Video/Graphics Adapater	24 bit capable graphics accelerator
	OpenGL version 2.0 runtime and Shader Model 3.0 or higher is recommended.
	ATI or Nvidia GPU is strongly recommended for any 3D GIS work or Cube Dynasim microsimulation
Networking Hardware	100BT or 1000BT TCP-IP compatible Ethernet adapter
Peripherals	DVD-ROM drive
	(1) available USB port, parallel port, or ExpressCard slot for hardware dongle
Operating System	Recommended: Windows 7; 32 or 64-bit; Professional, Enterprise, or Ultimate

Cube Cluster

Cube Cluster is used to significantly reduce model run time. With many processes and program steps enabling cluster will take advantage of multiple CPU cores or threads as much as possible to reduce model runtime. The D1RPM is setup to use both of the following features:

Distributed processing: Steps in the model flow that are not dependent on one another which are executed simultaneously on distributed or parallel processing nodes; and,

Intrastep processing: In the appropriate Matrix or Highway script processing calculations are apportioned to the number of clusters available.

An example of Distributed Processing: Transit network skim matrices are produced for two periods (peak and off peak travel) and for two separate modes of access (drive and walk). Each of these steps is independent of each other. In the D1RPM each of these steps run in approximately 12 minutes. This implies a total run time for this group of about 48 minutes if run sequentially. But if 4 cluster nodes are available, each step is distributed to a separate node using Cube Cluster, then all four steps would be executed simultaneously. The result under Cube Cluster would be that the run time for the group would now be limited to approximately the time of the longest running individual step in the group. Thus a time saving of approximately 36 minutes is achieved. Since the transit group is nested in a model feedback loop, using cluster saves about 1 hour and 48 minutes.

An example of Intrastep Processing: Performace is enhanced by splitting a computational task across all nodes in the cluster. For example: during a highway assignment, running 4 clusters, the D1RPM, with 5662 zones will distribute computation for zones 1-1415 to the first cluster, zones 1416-2831 to the second cluster, and so on, with all computations running simultaneously. Using (1) core, to run the AM assignment takes 72 minutes, but using (4) cores to run the same assignment takes only 24 minutes. Since the D1RPM highway assignment is nested in a model feedback loop, and there are four periods (AM, MD, PM, NT) the overall, time savings is approximately 10 hours and 36 minutes!

How to you set-up CUBE Cluster? First you must verify the number of CPU cores. A best way of doing this is to open CUBE and mouse-click on the question mark (shown here)

<u> </u>	D1RPM_101	Application Tools	Cube (Licensed to TRAF-O-DATA CORP)	_ — X
File Home	Scenario	Settings		⊘ ♡
🗖 🖬 🖉 * 🖉 🚈 📼				
Scenario	ф 🔤	Tier_A.app (C:\FSUTMS	\p1\p1RM_v1.0 ×	▼ X
₽ -YR2010	1	The Distr	ict One Regional Planning Model (D1RPM)	*

If you select "About", you will be presented with the following information:

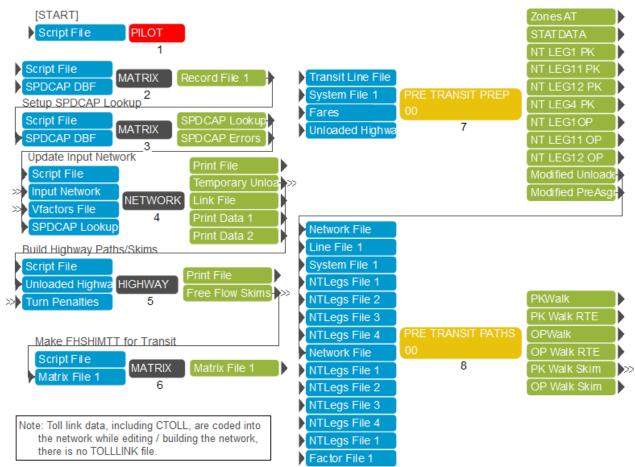
Look for "**Processors**" (here it is "4")

This product includes color specifications and designs developed by Cynthia Brewer (http://colorbrewer.org/)

Enter that value into your model's Key Field "cores", right under Scenario Name in the model's application manager.

File	Home	Scenario	
🖬 🖉 • 🗇 🌆			
Scenario			ņ
E- YR2010 — EC — CF_40A			
(P) Ann			ņ
d App			4
PT Tier A M SELECT ASS			
			ņ
SELECT ASS			ņ
SELECT ASS	SIGNMENT		
SELECT ASS	Value		•
SELECT ASS Key Scen. Name	Value CF_40A 4		•
SELECT ASS Key Scen. Name cores	Value CF_40A 4		•
SELECT ASS Key Scen. Name cores AlternativeInfo	Value CF_40A 4 (Note)		•
SELECT ASS Key Scen. Name cores AlternativeInfo Alt	Value CF_40A 4 (<i>Note</i>) A	P CF ALT8	•
SELECT ASS Key Scen. Name cores AlternativeInfo Alt year	Value CF_40A 4 (<i>Note</i>) A 40	P CF ALT8	•
SELECT ASS Key Scen. Name cores AlternativeInfo Alt year DESC	Value CF_40A 4 (<i>Note</i>) A 40 2040 LRT	P CF ALT8	

[START]



The first step in the model is to initialize (start up) the model. As a courtesy, we check to see if the proper version of CUBE is active, rather than have the model crash after running for two hours. This is necessary due to changes in the PASSENGER TRANPORT program (allowing for replacement of AUTOCON). The D1RPM cannot be run in CUBE versions prior to 6.1

Next we make sure the SCENAIRO's output folder exists, and then CUBE Cluster is started. Lastly, text is added to the RUNTIME file describing the run and start time.

```
; we can't run the wrong version of CUBE
1
IF (SOFTWAREVERSION<60100)
CLEARERROR CODE=0 RESUME=T
  PROMPT QUESTION='WARINING you MUST upgrade CUBE',
        ANSWER='This model will only run on version 6.1.0 SP1 (or higher)'
 IF (RETURNCODE==2) EXIT
GOTO :BADROBOT
ENDIF
PAGEHEIGHT=32767
PAGEWIDTH=132
; if output folder accidently deleted
*md "{scenario_dir}\output"
;run-time calculation file
*echo %date%START%time% > "{SCENARIO DIR}\OUTPUT\XTIME.prn"
; Open cluster nodes
IF ({cores}>1)
*CLUSTER TODdist 1-{cores} STARTHIDE EXIT
ENDIF
*echo FSUMTS Model Run - {SCENARIO_FULLNAME}>"{SCENARIO_DIR}\runtime.prn"
*echo Input Directory {SCENARIO_DIR}\input >>"{SCENARIO_DIR}\runtime.prn"
*echo Begin Run %date% %time% >>"{SCENARIO_DIR}\runtime.prn"
                                                 *echo =
                                    _____
```

The NETWORK step

Notes:

- 1) **START**..... puts start-time in runtime file
- 3) Setup SPDCAP Lookup...... reads SPDCAP file, checks for errors, formats lookup table for next step
- 4) Update Input Network...... adds distance, time, vfactors and other data to the network
- 5) Build Highway Paths/Skims..... computes free-flow time and speed
- 6) Make FHSKIMTT for Transit..... converts free-flow time and speed data for mode-choice model"
- 7) **PRE TRANSIT PREP**
- 8) PRE TRANSIT PATHS

Note: *The Pre Transit Prep* and *Pre Transit Path* procedures included in NETWORK are identical to the procedures in the TRANSITMODEL. Documentation is in the TRANSITMODEL section.

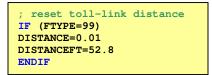
The NETWORK step is where the input HWYNET_yya.NET consisting of NODES and LINKS is processed. Nodes provide shape to links by following roadway geometry, or, serve as a loading point for a TAZ. Links contain all of the roadway information required for the model, such as Area Type (urban, residential, rural) or Facility Type (freeway, arterial, collector) or Lanes (number of lanes) and other attributes (toll costs or transit only). Depending on which options are selected, different attributes are added, or removed, from the network, creating an UNLOADED_ayy.NET.

SPECIAL NOTICE: The INPUT and UNLOADED Networks Are Different!

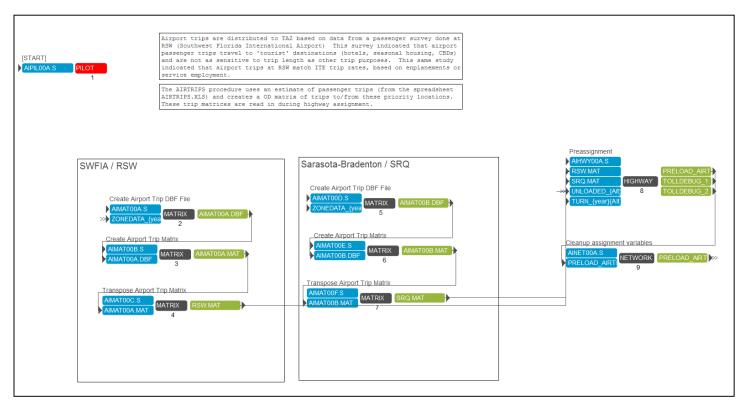
- The INPUT networks for the E+C and LRTP models contain ALL proposed roadways from all of the proposed roadway configurations developed during the MPO/TPO long range transportation planning process.
- This allows for quick removal (or addition of) roadways, without having to recode links and nodes, again and again. It is expected this feature may be useful during the life of the model, as projects are advanced or set back, depending on fiscal constraints and other unforeseen developments.
- During the network step of the model processes, any link with a LRTP_key of "99" will be <u>deleted</u> from the unloaded network as speed, capacity, distance, time and BPR data are added.
- For example, managed lanes are coded as interior, express, roadways on both I-4 and I-75 (to the maximum of a 6+4 lane configuration). Managed lanes on I-75, however, were not in the SIS plan and were not considered to be "cost feasible" in the 2040 model network and as such do not appear in the UNLOADED network used throughout the rest of the model processes.
- Therefore please, do not delete roadways with the LRTP_key of "99"
- The Field SV_LOSSTD is used for capacity evaluation (not model capacity) and should be changed as appropriate.

Note that in this step transit routes are merged with highway links so that: 1) errors and omissions may be quickly identified and, 2) transit paths/times are saved for subsequent use in the Trip Generation module.

SPECIAL NOTICE: The model's links on the input network <u>contains all toll coding required to run the model</u>. There is no longer a "tolllink_yya.dbf" file. When new toll roads are added, such as the Central Polk Parkway, the toll links also contain the following information:


TOLL identification number

CTOLL	toll cost coefficient (see box below)							
TOLLTYPE	toll type: 1, 2, 3							
PLZADESC	description							
PLZALNSMAX	lanes							
CARTOLL	dollar amount of the toll							
SVCMINUTES	dwell time, minutes							
SVCSECONDS	dwell time, seconds							
Acceleration and Deceleration links, on either side of the toll were also be coded with: TOLL identification number								
TOLL_DEC	"1" if deceleration lane							
TOLL_ACC	"1" if acceleration lane							


SUNPASS lanes should be explicitly coded as separate lanes so no dwell time will be applied for stopping to pay the toll, although deceleration and acceleration lanes are still required (until all tolls are coded as type (3) open-road tolling.

		3	5% value 1	0% value	
CTOLL	Average	HHINC	of time	of time	
Ch	narlotte	46,926	0.031	0.108	Turnpike Modeling
Co	ollier	58,402	0.025	0.087	
De	esoto	41,299	0.035	0.123	CTOLL = (1248 * IVTT) / (EIP * INCOMI
Gl	ades	39,283	0.037	0.129	
Ha	ardee	39,897	0.036	0.127	TIMEC
He	endry	41,767	0.035	0.121	1248 – factor to convert income in dollars/year to cents/minute
Hig	ghlands	37,523	0.039	0.135	(assumes 2080 work hours/year)
Le	e	50,761	0.029	0.100	IVTT – Coefficient for In-Vehicle Travel Time (i.e. : Florida – 0.02
Ma	anatee	53,647	0.027	0.095	EIP – Expendable Income Percentage (Range : 10 – 35 %)
Oł	reechobe	43,562	0.033	0.116	INCOME – Average regional household income
Po	olk	42,268	0.034	0.120	TIMEC – Coefficient of Time, Statistical Estimation of Mode &
Sa	irasota	55,149	0.026	0.092	Route Choice based on Survey Data Collected
us	ing the coef	ficient of ti	me for mod	e route choice	(i.e. : Orlando – 0.0469, Tampa - 0.0492, Jacksonville – 0.0489
ba	sed upon Ta	ampa surv	ey: 0.0492		(new oralla orallos), rumpa (101)2, jackbonvine (1010)
					Example CTOLL – Jacksonville Region =0.0736, Clay Co =0.0798,
					St Johns Co =0.0511

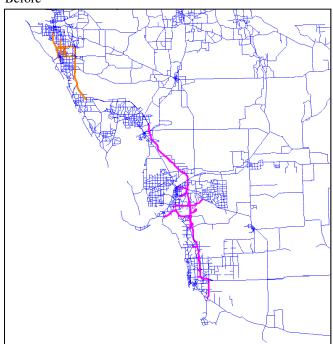
Note: All toll links distances are "corrected" in the NETWORK step, as shown below:

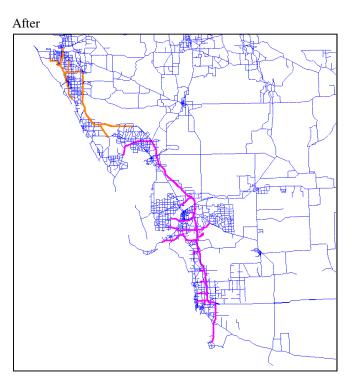
The AIRPORTS step SPECIAL NOTICE: This procedure used for estimation of airport trips, is only found in the D1RPM.

Notes:

1) [START]	puts start-time in runtime file
2) Create Airport Trip DBF File	creates an airport trips database file for RSW (SouthWest Florida International
	Airport) with destinations based upon formulas using socioeconomic data from
	the ZONEDATA_yya.DBF file and the number of enplanements from the
	ENPLANEMENTS spreadsheet
3) Create Airport Trip Matrix	reformats the DBF file into a matrix
4) Transpose Trip Matrix	self-explanatory.
5) Create Airport Trip DBF File	creates an airport trips database file for SRQ (Sarasota-Bradenton International
	Airport) based upon formulas using socioeconomic data from the
	ZONEDATA_yya.DBF file and the number of enplanements from the
	ENPLANEMENTS spreadsheet
6) Create Airport Trip Matrix	reformats the DBF file into a matrix
7) Transpose Trip Matrix	self-explanatory.
8) Preassignment	self-explanatory.
9) Cleanup Assignment Vars	renames cube variables into English i.e. V1_1=SRQtrips

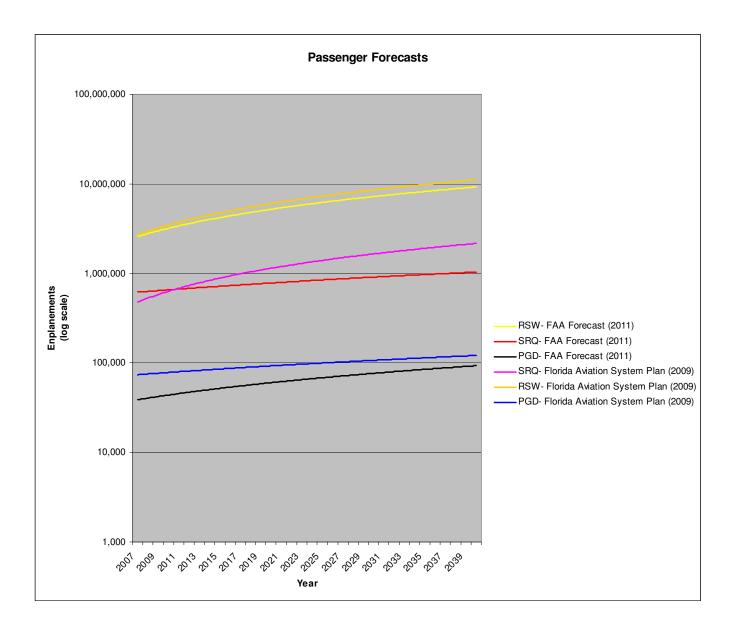
Airport trips are estimated using "*ENPLANEMENTS TO 2043.XLS*" spreadsheet.¹ Additional data from the Florida Aviation System Plan (FASP) and the Federal Aeronautics Administration (FAA) were added to the spreadsheet (contained in the \documentation\reference folder) while developing estimates for the D1RPM 2010-2040 enplanements.


The 1990 Lee County FSUTMS model included a DOS-based special airport trip generation and distribution procedure to better replicate the travel patterns of persons using the Southwest Florida International Airport. For the 2000 model validations, the procedure was modified to use data in the ZDATA1 and ZDATA2 files and run in the job stream. For the 2007 model validations these procedures were replicated using CUBE script.


The distribution of trips based upon an 1989 Airport O & D survey, which indicated that beach and resort areas attract more airport trips than residential areas, regardless of the distance from the airport. Specifically: trip distribution at the airport entrance was as follows: 20% to the north; 41% to the south; 6% to the east; and, 33% to the west. Additionally, the survey also provided percentages of trips crossing the county lines as follows: 33% cross the Lee/Collier County line, 9% cross the Lee/Charlotte county line, with the remaining 58% distributing within Lee County.

The procedure uses the ZDATA1 and ZDATA2 files, to calculate an "attractiveness" quotient, based upon each TAZs potential to attract air travelers.

As can be seen by comparing Fig1 and Fig2 without the special AIRPORT procedure, Trip Distribution limited trip distance, resulting in trips being distributed to the closest traffic analysis zones. With the special AIRPORT procedure trips are distributed to the beach and resort areas as well as to Collier County and Charlotte County as indicated by the survey.


Before

¹ The original Air Passenger Vehicular Trip Generation Summary spreadsheet, URS Corporation, May 2001, as amended and supplemented with FAA 2011 forecast data by Traf-O-Data, 2015

The Enplanements Spreadsheet

Enplanement Forecast (2011)									
Year	RSW faa forecast	RSW fasp	SRQ faa forecast	SRQ fasp	PGD faa forecast	PGD fasp			
2007	3,964,603		787,972						
2008	3,821,830		773,211		36,045	76,611			
2009	3,682,535	3,668,279	670,705	675,969	45,353				
2010	3,639,445		660,305		45,355				
2011	3,810,750		664,044						
2012	3,458,809		643,008						
2013	3,567,370		648,274			82,532			
2014	3,707,127	4,441,607	659,014	826,381					
2015	3,901,552		678,593						
2016	4,099,244		696,712						
2017	4,256,927		709,639						
2018	4,420,752		722,809			88,910			
2019	4,590,957	5,377,963	736,227	1,010,262					
2020	4,767,798		749,898						
2021	4,951,535		763,828						
2022	5,142,444		778,021						
2023	5,340,810		792,481						
2024	5,546,932		807,214						
2025	5,761,113		822,224						
2026	5,983,678		837,517						
2027	6,214,960		853,099						
2028	6,455,306		868,976			103,184			
2029	6,705,081	7,884,485	885,151	1,509,876					
2030	6,964,661		901,632						
2031	7,234,437		918,424						
2032	7,514,817		935,533						
2033	7,806,228		952,965						
2034	8,109,114		970,726						
2035	8,423,934		988,823						
2036	8,751,170		1,007,261						
2037	9,091,320		1,026,046						
2038	9,444,906		1,045,185						
2039	9,812,472		1,064,685						
2040	10,194,582	11,541,253	1,084,554	2,249,004	92,866	122,323			
Source	00:								

Sources: http://www.cfaspp.com/Airport/AirportList.aspx LCPA, Southwest Florida International Airport (RSW) Enplanement Passengers", 2009

http://www.srq-airport.com/newsroom/srq-documents/airport-statistics.aspx

The AIRTRIPS Program

The AIRTRIPS program, in CUBE script, follows these steps

Get Data From Keys

Get Data From Keys	*****
;get data from KEYS	
AIRZONE={RSW}	; the airport zone
AIRVTRIPS=({RSWTRIPS} * 0.5)	; TOTAL airport trips (divided in half, because we will transpose the matrix to get return trips)
AIRNORTH=(AIRVTRIPS*{RSWN})	; trips to be distributed north of Lee Co.
AIRSOUTH=(AIRVTRIPS*{RSWS})	; trips to be distributed south of Lee Co.
AIREAST=(AIRVTRIPS*{RSWE}) _RSWW=1-{RSWN}-{RSWS}-{RSWE}	; trips to be distributed east Lee Co.
AIRTRIPS=(AIRVTRIPS*_RSWW)	; trips to be distributed within of Lee Co.

Get ZONEDATA

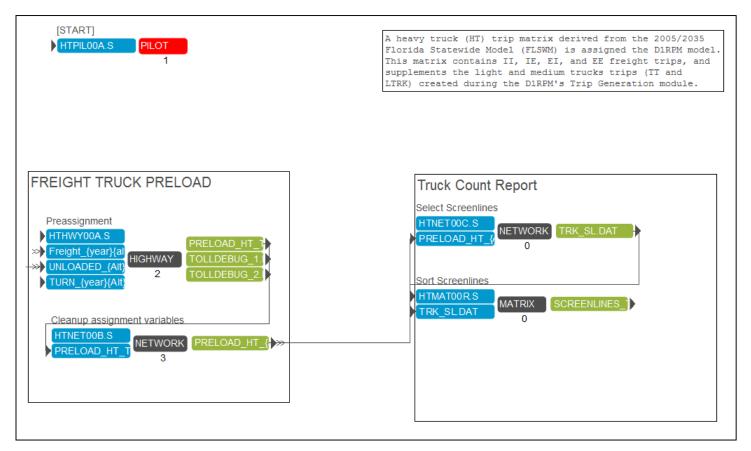
;get data from TAZ
mzone=zi.1.zone
mpop[mzone]=(zi.1.sfpop+zi.1.mfpop)
mseasonal[mzone]=((zi.1.sf_pctvnp-zi.1.sf_pctvac)+(zi.1.mf_pctvnp-zi.1.mf_pctvac))
mhpop[mzone]=zi.1.hmpop
memp[mzone]=zi.1.tot_emp

Accumulate totals

```
; accululates totals
if(zi.1.zone>={CollierTA2} & zi.1.zone<{LeeTA2})
    popS=popS+(zi.1.sfpop+zi.1.mfpop)
    seasonalS=seasonalS+((zi.1.sf_pctvnp-zi.1.sf_pctvac)+(zi.1.mf_pctvnp-zi.1.mf_pctvac))
    hotelS=hotelS+zi.1.hmpop
    empS=empS+zi.1.tot_emp
```

Calculate Weighting factors

```
; calculate weight factors
loop x=1,{ZONESI}
if (X>={CollierTAZ} & X<{LeeTAZ})
  pop[X] = mpop[x]/popS
  seasonal[X]= mseasonal[x]/seasonalS
  hotel[X] = mhpop[x]/hotelS
  emp[X] = memp[x]/empS
    total[X] = pop[X]+seasonal[X]+hotel[X]+emp[X]
    totalS=totalS+total[X]
```


Apply Weighting Factors

; apply weights loop x=1,{2ONESI} if (X>={CollierTA2} & X<{LeeTA2}) if (totalS=0) weight[X]=1 else weight[X] = total[X]/totalS ==dif

Write out records to DBF file

The FREIGHT step

SPECIAL NOTICE: This procedure used for estimation of truck trips, is only found in the D1RPM.

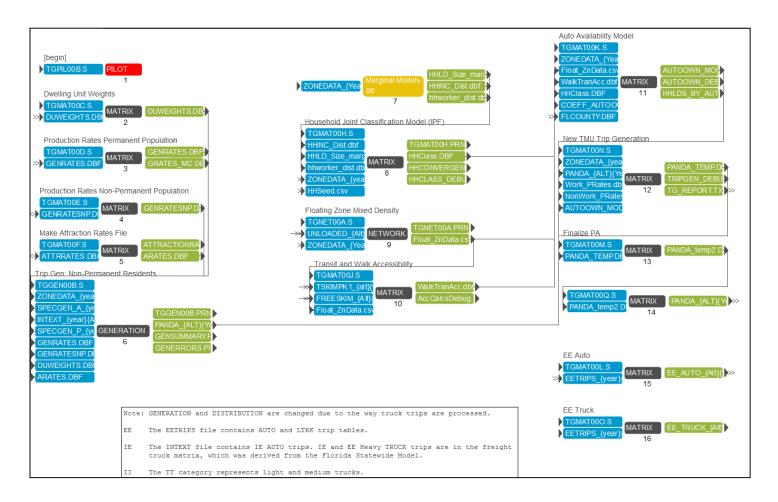
Notes:

- 1) [START] puts start-time in runtime file
- 2) Preassignment a highway load of just HT vehicle trips
- 3) Cleanup Assignment Vars re-names CUBE variables into English sounding variables i.e. V1_1= HT
- 4) Select Screenlines a highway load of just HT vehicle trips
- 5) Sort Screenlines sorts and print report

This process adds to the D1RPM, truck trips estimated by the current Florida Statewide Model (FLSWMv5124) disaggregated to District One Planning model zones.

The Florida Statewide Model (FLSWMv5124) was chosen because the statewide model contains procedures for estimating tons of goods movement by water, rail, highway and air to/from Florida, United States and from around the world (see graphic) It is reasonable to assume that the trips can be disaggregated from the larger FLSWFM TAZs to the smaller D1RPM TAZs based on the share that the truck Productions(Ps) and Attractions(As) in the D1 RPM TAZ are to the Ps and As in the FLSWFM TAZs in which they nest.

The current Florida Statewide Freight Model v. 5124 (FLSWFM) produces freight truck volumes for base and forecast years of trucks by 14 Commodity Groups (CG) as well as non-freight trucks. The process consists of the Generation, Distribution and Mode Choice of tons of freight in 14 Commodity Groups (CG) chosen to represent the primary commodities traveling on Florida's transportation system. After the freight tons have been allocated to the truck model, the table is converted from annual tons to annual truck vehicles and from annual trucks to daily truck vehicles. This conversion is made so that truck trips can be assigned as part of a multiclass assignment of tables of freight trucks, the other trucks that do not carry freight and passenger vehicles. FLSWFM trip rates were calculated using a regression analysis of Florida-specific economic data.


A subarea extraction process by which a trip table that represents a larger area is processed using the network of the larger area, and a list of links that cross the model boundary of the smaller region. was used to create tables of truck trips that pass through links on the model boundary can be treated as external stations of the smaller model region. The trip table TAZs within the model boundary will have the same size and scale of the larger model.

Trips are disaggregated to the more numerous and smaller TAZs within the model region using the FLSWFM equations to calculate Productions and Attractions in the D1RPM TAZs Using this NAICS3 employment, other ZDATA for the D1RPM TAZs, and the Production and Attraction equations from the FLSWFM, it is possible to estimate what the truck Productions (Ps) and Attractions (As) would have been in each D1RPM TAZ using the FLSWFM equations. These Ps and As can then be used as a disaggregation factor, defined as the share of Ps (or As) that a D1RPM TAZs is of the Ps (or As) in the FLSWFM TAZ in which it nests.

The disaggregated tables can be used as the basis for forecasting future truck tables. These future year tables were created by using the base year table as the seed to a FRATAR program where the growth in the Productions (Origins) and in the Attractions (Destinations) is increased by the amount of the growth in the industries that were the explanatory variables in the FLSWFM Production and Attraction equations. Because those equations require detailed NAICS3 industry employment that is available in the base year but is not available in the forecast year, the forecast growth for these trucks was made by associating general employment categories with the productions and attractions of each truck table, and applying that growth, at the D1 RPM TAZ level, to each table in a FRATAR process.

The Trip Generation Step

SPECIAL NOTICE: These procedures are taken directly from the Transit Update Model Project, and, other than the FDOT Olympus Training Model, are only found in the D1RPM.

Notes:

110		
1)	[START]	. puts start-time in runtime file
2)	Dwelling Unit Weights	writes DUWEIGHTS file out to standard format, which allows for
		various input formats (csv, txt, dbf, xls)
3)	Production Rates Permanent Population	writes GENRATES file out to standard format, which allows for
		various input formats (cave, txt, dbf, xls)
4)	Production Rates Non-Permanent Population	writes GENRATESNP file out to standard format, which allows for
		various input formats (csv, txt, dbf, xls)
5)	Make Attraction Rates File	writes GENRATESAT file out to standard format, which allows for
		various input formats (csv, txt, dbf, xls)
6)	TripGen Non-Permanent Residents	trip generation for seasonal residents, puts special generator and
		external-internal data into temporary PANDA matrix
7)	MARGINAL MODELS	. checks for out-of-range household size, household income and
		household workers
8)	Household Joint Classification (IPF)	. Iterative Proportional Fit sub-model process
9)	Floating Point Mixed Density	. sub-model
10)) Transit walk accessibility	. makes a "walk time" skim
11)) Auto Availability Model	. sub-model
12)) New TMU Trip Generation	. trip generation

13) Finalize PA	. prepares the trip matrix for the Trip Distribution step. It also applies
	adjustments for changes in Florida's unemployment rate, as detailed in
	TM-3
15) Prepares the EE auto matrix	. self-explanatory
16) Prepares the EE truck matrix	. self-explanatory

This Trip Generation module, which was developed for the TMU project¹ uses several sub-models in a combination of techniques to estimate the number of trips bound to, or destined from, each Traffic Analysis Zone. The process factors seasonal and permanent populations by the appropriate trip generation rate, which is related to the number of occupied dwelling units, auto ownership and household income. Each grouping is what will be referred to as "market segments".

The trip generation model uses:

- New (Florida) trip generation rates from 2010 from ACS, NHTS and Census data are utilized.
- Trip purposes split trips into 47 "travel markets" using income and auto availability. Also,
- EE and IE trip matrices now contain auto and truck trips.
- New purposes are provided for: college and university trips; there are two classes of home-based work trips (high-income trips travel further); and there is a new purpose for mid-day 'lunch-hour' travel.

A trip's purpose is important in determining trip length during the trip distribution module. For example, people generally do not travel as far on a shopping trip as they would commuting to work. Trip purpose also plays a significant part during the modal choice module. When estimating transit use, the propensity to use public transit and carpools is higher for work trips than for other trip purposes. When converting person-trips to vehicle-trips in the modal choice module, average vehicle occupancies differ by trip purpose. For example, people commonly drive alone to work although they rarely drive alone to the beach or other recreational activities. In the traffic assignment module, trip purpose has been used in some specialized models to help time-of-day travel estimates. Analysis for toll roads and high-occupancy vehicle facilities often focuses on work trips, which predominate during peak hours.

SPECIAL NOTICE: Trip purposes and Trip Rates are changed due to the way truck trips are processed.

The heavy truck (HT) matrix imported from the FLSWM contains all truck trips of that classification: 1) internal-to-internal; 2) internal-to-external, and; 3) external-to-external (through trips).

Two other files, EETRIPS and INTEXT also contain AUTO and TRUCK trips. In both cases "trucks" may be defined as "classifications (non-HT) that we may wish to exclude from special use lanes".

The trip rate for the TT category (which represents a miscellaneous category of "truck" and "taxi" trips) has been reduced to account for the addition of the HT truck matrix,

Addressing Unemployment

Below is a description of the procedure used to adjust trip generation for changes in employment between the base and future year models.

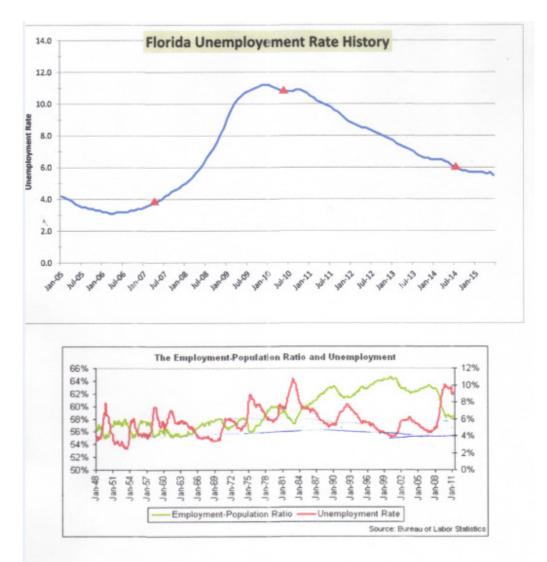
There are several reason a procedure for addressing changes in the unemployment rate has been included in the D1RPM. This requirement came about because Florida's unemployment rate for 2010 was about 10.9 percent -- much higher than the historical long-term unemployment rate, for Florida, which hovers around 5 percent. This is also supported by comparing historical traffic counts to 2010 traffic counts. The downturn in the economy resulted in fewer vehicle trips in the validation year.

¹ "Task 06, Transit Modeling Update, Technical Memorandum 1, Trip Generation Review and Recommended Model Development Guidance, Florida Standard Urban Travel Model System, May 2011"

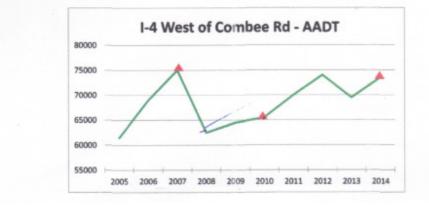
District One Regional Planning Model

Secondly, the model's trip generation rates, which were developed from a 5 year average of ACS household surveys, reflect the higher trip making with an improved economy. This is typical, as there is a gap between when households are surveyed, when the data is compiled and when data is made available (generally, the trip rates for the model reflect 2007 conditions). Without a correction factor, more trips are generated and the resulting model's volume/count ratio hovers around 1.04-1.06 percent

Additionally. data for the model's validation year, 2010, was developed from the U.S. Census of the population for that year and from the InfoUSA of employers database, which is also keyed to 2010 conditions. Again, there is a lag between the time employers are surveyed and employment data is made available. An inquiry and response from InfoUSA confirms that no correction factors for unemployment rate is included in the data.


Lastly, uncorrected, future year model volumes would be artificially low. Indeed, traffic counts for 2014 indicate that Florida's economy has returned to normal, and traffic volumes are similar to 2007 traffic count volumes.

The procedure (which is similar to the process used in D7) is to apply the difference in base year and model year unemployment rates using two "keys" in the model. Keys may be changed by the user. For the validation year 2010 the keys are: *base_unemployment* (0.109), and; *current_unemployment* (0.042) For the future year (2040) the "keys" are the same (0.050)


The rates are applied after Trip Generation in step 13, as shown below:

Finalize PA			
Script File	MATRIX	Record File 1	
Zonal Data 1	13		_

; Do not change filenames or add or remove FILEI/FILEO statements using an editor. Use Cube/Application Manager. RUN PGM=MATRIX MSG='Finalize PA' FILEI ZDATI[1] = "{SCENARIO_DIR}\OUTPUT\PANDA_TEMP.DBF"
FILEO RECO[1] = "{SCENARIO_DIR}\OUTPUT\PANDA_{ALT}{Year}.DBF", FIELDS= 2, HEW1P, HEW1A, HEW2P, HEW2A, HESHP, HESHA, HESRP, HESRA, HEOP, HEOA, HESCP, HESCA, HECUP, HECUA, NHEP, NHEA, TTP, TTA, IEP, IEA PAR ZONES={ZONESA} RO.Z=I ; TMU documentation shows that HBW trips from high-income households tend to be longer ; there is no evidence that low income trips tend to be shorter, therefore ; HBW trips are separated into two categories with separate Friction Factors ; HB WORK for income category 1,2,3,5,6 HBW1P=(ZI.1.HBWP1+ZI.1.HBWP2+ZI.1.HBWP3+ZI.1.HBWP5+ZI.1.HBWP6)* ((1-{current_unemp})/(1-{base unemp})) ; HB WORK for high-income caterogy 4,7 HBW2P=(ZI.1.HBWP4+ZI.1.HBWP7)* ((1-{current unemp})/(1-{base unemp})) HBSHP=(ZI.1.HBSHP1+ZI.1.HBSHP2+ZI.1.HBSHP3+ZI.1.HBSHP4+ZI.1.HBSHP5+ZI.1.HBSHP6+ZI.1.HBSHP7)* ((1-{current_unemp}))((1-{base_unemp})) HBSRP=(21.1.HBSRP1+Z1.1.HBSRP2+Z1.1.HBSRP3+Z1.1.HBSRP4+Z1.1.HBSRP5+Z1.1.HBSRP6+Z1.1.HBSRP7)* ((1-{current unemp})/(1-{base unemp})) HBOP=(ZI.1.HBOP1+ZI.1.HBOP2+ZI.1.HBOP3+ZI.1.HBOP5+ZI.1.HBOP5+ZI.1.HBOP5+ZI.1.HBOP5+ZI.1.HBOP7)* ((1-{current_unemp})/(1-{base_unemp})) HBSCP=ZI.1.HBSCP1+ZI.1.HBSCP2+ZI.1.HBSCP3+ZI.1.HBSCP4 HBCUP=ZI, 1, HBCUP1+ZI, 1, HBCUP2+ZI, 1, HBCUP3+ZI, 1, HBCUP4 NHBP=(ZI.1.NHBWP+ZI.1.NHBOP)* ((1-{current unemp})/(1-{base unemp})) IEP=ZI.1.IEP HBW1A=(ZI.1.HBWA1+ZI.1.HBWA2+ZI.1.HBWA3+ZI.1.HBWA5+ZI.1.HBWA6)* ((1-{current unemp})/(1-{base unemp})) HBW2A=(2I.1.HBWA4+2I.1.HBWA7)* ((1-{current_unemp})/(1-{base_unemp}))
HBSHA=(2I.1.HBSHA)* ((1-{current_unemp})/(1-{base_unemp})) HBSRA=(ZI.1.HBSRA)* ((1-{current_unemp})/(1-{base_unemp})) HBOA=(ZI.1.HBOA)* ((1-{current_unemp})/(1-{base_unemp})) HBSCA=ZI.1.HBSCA HBCUA=ZI.1.HBCUA NHBA=(ZI.1.NHBWA+ZI.1.NHBOA)* ((1-{current unemp})/(1-{base unemp})) IEA=ZI.1.IEA ; factor TT down to account for Heavy Truck preload TTA=ZI.1.TTA*.8 TTP=ZI.1.TTP*.8 WRITE RECO=1 ENDRUN

	Polk Mod	Growth		
	2007	2010	2007-2010	
Employees	245928	255593	9665	
Population	572048	589811	17763	
Emp/Pop	0.43	0.43	0.54	

External Trips

Development of the model also required that automobile and truck trip volumes be assigned to roadways that exit the study area at "external stations". There are special considerations that are taken into account at these locations. For 2010, traffic count data were used to establish external station volumes at these locations. For the future year, however, traffic volumes used at these locations in the D1RPM were coordinated with the adjacent FDOT district models.

Loaded model networks from the latest adopted (YR2040) models for FDOT Districts 4, 5 and 7 were provided for this purpose. Total vehicle trips were identified for: drive-alone and shared-ride auto, as well as for light, medium and heavy trucks. These data were presented to each of the MPO's in The District, for discussion and to determine of these volumes agree with expectations of development for their area.

Special consideration was given to:

<u>Internal-to-External</u> vehicle trips to attractions near the model area: NE Polk County, where about 20% of the home-based trips are attracted to Orange County's Theme-Parks. Manatee County, where HBW trips are attracted towards Pinellas County and Hillsborough County. Trips from Rural Areas head East, towards the Florida Coast on SR 70, US 98 and US 27.

Additionally, discussion and agreement was provided on the status of other type of "external station" trip: through-trips. Special consideration was given to:

External-to-External or "through trips" along the following corridors:

I-4 east-to-west vehicle trips (autos and trucks),

I-275-to-I-75 vehicle trips (autos and trucks),

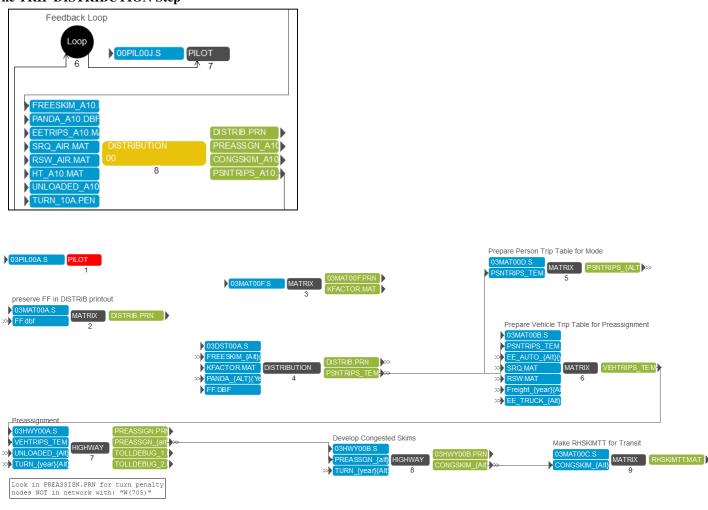
I-75 north-to-south truck trips from Tampa to Miami.

An external trip table worksheet for 2010 and 2040 EETRIPS.XLS (provided in the model's \documentation folder) lists external station counts (autos and trucks) and allows for modifying external productions and attractions, as needed, during validation. It is used to update contained in the model input folder as: INTEXT_10A.DBF, SPECGEN_A_10A.DBF and SPECGEN_P_10A.DBF contained in the model input folder. Relevant parts of this worksheet are shown below:

Zop2010 EXT Name Dr. DR HKs Prodes LEE LE Fords Intext Arts 6523 U25 V250 V350 0.0335 1.200 0.0122 3556 1296 4666 101631 0.55 0.561 0.56 0.561 0.56 0.475 0.56 0.475 0.56 0.477 0.56 0.477 0.56 0.477 0.56 0.477 0.56 0.477 0.56 0.477 0.53 1.23 0.0913 1.3054 9746 12466 1900 4.750 88546 0.50 4.417 5.3 1.23 0.0913 1.3054 9746 12466 1900 4.53 1.23 2.11 6.661 0.50 0.51 5.438 1.238 2.11 6.563 6.664 1.033 1.235 5.66 1.033 1.238 2.111 6.564 5.438 1.11 5.656 5.66 1.033 1.235 1.235 1.11 5.666 1.2383 1.11 5.665	2040 EXTERM	NALS			PKFIX.NET	-														
6629 1275 101631 0.50 16975 1296 14606 129 101631 0.50 750 150					PSWT BY	pcnt						freight		LT	AUTO	AUTO	%		specgen	
ESS21 US 41 N W F3006 Octor	Zor 20 1	10 EX1	Name		DIR	trks						preload	EE	IE	EE	IE	Prods	intext	Attrs	
S831 175 N S 63307 12.230 0.1223 9.130 0.0913 13054 9746 12466 1900 4750 8856 0.55 42,23 5.3,127 7.144 6622 US 301 S 3.416 3.416 0 0 206 0.55 0.4275 8819 0.53 3.410 4.925 50.127 7.144 4.925 50.123 7.130 6.031 1.232 9.130 0.0913 13054 9746 1246 100 2005 0.50 1.033 1.232 50.05 56 6.66 7.997 2.66 55 1.3329 0.55 1.664 7.997 2.66 55 1.3329 0.55 1.664 7.997 2.66 56 1.322 0.50 1.997 2.44 2.650 1.325 1.11 563 1.325 3.416 1.325 1.11 564 1.235 1.11 564 1.242 1.255 1.11 564 1.2425 0.50 2.241				W	53,118	3.350	0.0335	1.220	0.0122	3559	1296	4606				101631	0.50	50,815		specgen
Social Field Social Field<		5630	US 41 N	W	8,006							98				15913	0.50	7,957	9,548	
0.00000000000000000000000000000000000		5631	I-75 N		53,371	12.230	0.1223	9.130	0.0913	13054	9746	12496	1900		4750	88546	0.50	44,273	53,127	31,481
5634 CR 39 W 4,543 2,14 5635 CR 674 W 1,770 3329 0,50 4,533 2,11 5635 CR 674 W 1,770 3229 0,50 4,531 0,50 4,533 1,739 2,111 5635 CR 676 W 1,961 0 3322 0,50 1,601 2,353 1,11 5635 CR 676 W 3,062 112 0 3322 0,50 1,861 1,2353 1,11 5643 KR,20 W 8,860 0,026 34593 19926 22662 3225 22800 17969 6,663 1,22 5644 Kinghts Station Rd W 4,750 14,44 8,260 0,026 34593 1992 22662 3225 22800 17969 2,455 0,50 2,127 2,553 5,453 1,22 3,354 1,22 3,352 5,700 5,663 1,32 5,663 1,32 1,1												12				6819				5,012
3535 Ch 353 W 4,345 24 3016 0.50 1,753 9,211 5636 Ch 640 W 6,693 56 13329 0.50 6,664 7,977 2,86 5638 Ch 640 W 1,961 0 3921 0.50 6,664 7,977 2,86 5638 Medulla Rd W 3,062 2116 9080 0.50 2,573 1,11 5638 Medulla Rd W 3,062 216 9909 0.50 2,855 1,225 1,114 5641 US 92 W W 8,860 0.1434 8,260 0.0826 34533 19926 2280 179624 0.50 8,855 1,625 11,14 5643 US 98 N W 8,085 14,340 0.1434 8,260 0.0826 34533 19926 22800 179624 0.50 8,555 55,55 55,55 55,55 55,55 55,55 55,55 55,55 55,55 55,55 55,55 55,55 55,55 55,55 55,55 55,55 55,55 <td></td> <td>5633</td> <td>CR 579</td> <td>S</td> <td>1,033</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>2065</td> <td>0.50</td> <td>1,033</td> <td></td> <td></td>		5633	CR 579	S	1,033							0				2065	0.50	1,033		
3533 GR 640 W W 6,663												24								
Social Gradient N Goods Social Gradient												4								652
3637 01107 010 3637 030 020 030 023 02300 0300 0300 03												58								
S659 Medulia Rd W 3,062 112 7000 0.50 2,954 12,555 12,555 5640 US 92 W W 8,860 0.0826 34593 19926 22662 3325 22800 179624 0.50 8,855 10,625 11,14 5641 H-W W 4,750 8,860 0.0826 34593 19926 22662 3325 22800 179624 0.50 8,855 10,625 11,14 5644 KR 471 N 2,2223 1926 22662 3325 12924 0.505 2,127 2,553 2,994 4,935 5,664 0.1257 0.503 6,812 1,729 4,93 5,664 0.1257 0.1528 36836 2939 27400 3325 22800 12948 0.50 6,449 7,699 7,069 5,649 4,49 11,869 0.0 325 22800 12948 0.50 6,4747 7,699 7,069 5,650 1,935 0.50 <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												0								
Social Machanization N Codat Base Codat Base <thcodat< th=""> Codat Base <thcodat< th=""></thcodat<></thcodat<>																				
Social L4 W W 120,618 14,340 0.1434 8.260 0.0826 34593 1992 22662 3325 22800 179624 0.50 99,812 07,774 183 5642 Knights Station Rd W 4,750 116 9384 0.50 4,682 5,630 5,555 5,564 5,565 5,564 5,565 5,564 5,564 5,646 1176 116 116 116 116 116 116 116 116 116												216								
Social Netri Class																				
Sofal US 99 N W 8,085 7,03 500 7,93 9,03 7,01 500 7,93 9,03 57,01 5643 US 99 N W 8,085 192 4265 0.50 7,93 9,033 2,94 5644 SR 471 N 2,223 192 4265 0.50 2,127 2,553 2,94 5646 US 27 N N 36,141 106 72177 0.50 36,088 43,006 1,33 5647 Champions Gate Blvd E 97,969 18,800 0.1880 15,280 0.1528 36836 2939 27490 3325 22800 129496 0.50 64,749 7,059 7,05 5649 W Lake Wilson Rd N 9,722 10 19435 0.50 7,124 4,97 5650 US 29 NE E 7,580 676 14444 0.50 9,743 3,864 4,90 5652 SR 60 E N 6,973 3 6655 52766 0.50 2,6,383 31,660						14.340	0.1434	8.260	0.0826	34593	19926		3325		22800					
Sors 30 30 1 N Codd 2000 Codd 2000 <thcodd 2000 Codd 2000 <thcodd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thcodd<></thcodd 																				
John Jing N Zusci Sees Jusci Jusci Sees Jusci Jusci Sees Jusci Jusci Sees Jusci Sees Jusci Sees <thjusci Sees <thjusci Sees J</thjusci </thjusci 																				
3043 3043 3043 1106 1106 1727 0.50 3,74 1,123 5646 US 27 N N 36,141 2,495 0 38410 0.50 19,205 23,046 3,74 5647 Champions Gate Blvd E 2,495 0 38410 0.50 19,205 23,046 3,74 5648 I-4 E 97,969 18,800 0.1880 15,280 0.1528 36836 29939 27490 3325 22800 129498 0.50 64,749 77,699 70.05 5649 W Lake Wilson Rd N 9,722 0 676 14444 0.50 7,242 8.690 40.05 5651 CR 580 / Cypress Pkwy E 2,6410 54 52766 0.50 2,6383 31,660 4,97 5652 S 60 E N 6,6973 13847 0.50 3,717 11,61 8,302 5654 CR 68 E E 2,088 740 3436 0.50 1,718 2,061 4,44 5655 SR 70 E S																				
S647 Champions Gate Blvd E 2,449 7,699 7,059																				
Sofari Johan Jpuis Galar Blind L 2,433 18,800 0.1880 15,280 0.1528 36836 29939 27490 3325 22600 10 56 64,749 7,05 7,111,161 8,35 6,059 7,05 5,												106								
Solida (N L) C Solida (N L)				Е	_,							0								
Second Laboration Laboratin Laboration Laboration Laboration Laboration Labo						18.800	0.1880	15.280	0.1528	36836	29939		3325		22800					
5651 CR 580 Cypress Pkwy E 7600 7700 57276 5.50 22,833 31,660 4,973 5652 SR 60 E N 6,973 544 5642 13947 0.50 6,973 8,366 4,44 5653 US 441 N E 3,202 6404 0.50 3,202 3,843 106.65 5654 CR 68 E E 2,088 740 53346 0.50 5,702 6,843 2,064 4,44 5655 SR 70 E S 6,159 914 114057 0.50 5,702 6,843 2,003 5656 SR 710 SE S 7,203 40 14367 0.50 1,718 8,620 944 5656 SR 710 SE S 7,203 40 14367 0.50 1,718 3,12 3,44 5658 SR 70 E E 13,885 300 2,764 3,12 3,44 5656 560 5,13,735 16,482 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																				
3631 Or Job / Opties F NW 2 20,410 34 32,760 0.30 20,363 31,000 4,44 5652 SR 60 E N 6,973 6,973 6,404 0.50 3,202 3,843 10,65 5654 CR 68 E E 2,088 740 3436 0.50 3,202 3,843 5655 SR 70 E S 6,159 914 11405 0.55 7,720 40 14367 0.50 7,102 342 35,000 39,000 34,363 30,000 20,333 31,000 44,44 5655 R 70 E S 6,159 914 11405 0.55 5,702 6,43 2,003 316,300 312,334																				
Social US 441 N E Social US 441 N Social US												54								
3653 (CR 710 C 3642 3643 36563																				
S665 SR 70 E S 6,159 914 11405 0.50 7,70 2,03 5665 SR 70 E S 7,203 40 14367 0.50 7,18 8,620 96 5665 SR 710 SE S 7,203 40 14367 0.50 7,18 8,620 96 5665 SR 70 SE S 7,203 326 5520 0.50 13,735 16,482 4,55 5658 US 27 / SR 80 E E 13,885 300 27469 0.50 13,735 16,482 4,55 5656 JUS 41 Collier County W 18,892 84 1900 4750 32000 0.50 16,000 17,07 5666 US 41 Collier County W 2,914 586 5241 0.50 2,621 3,15 3,48 5661 Marigold S 18,109 6222 2996 0.50 1,498 17,97 8,88 5662 Marigold S 18,109 502 4,000 50 3,992 5,98 1,50 <td></td>																				
Social Signed Social S																				
36657 US 98 / US 441 SE E 2,923 326 5650 0.50 2,760 3,735 16,482 4,55 5658 Alligator Alley W 18,892 84 1900 4750 3200 0,50 13,735 16,482 4,55 5659 Alligator Alley W 18,892 84 1900 4750 32000 0,50 13,735 16,482 4,55 5669 Alligator Alley W 18,892 84 1900 4750 32000 0,50 16,000 19,200 1,45 8,60 5661 Marigold S 18,109 6222 29996 0,50 1,498 17,997 8,88 5662 Tri-County Rd 4,000 16 7984 0,50 3,992 5,98 1,507 5665 Marigold 9,531 14 4564 1500 4408 0,50 3,992 5,98 1,507																				2,022
Social US 27 / SR 80 E E 13,885 300 27469 0.50 13,735 16,482 4,50 5659 US 27 / SR 80 E E 13,885 300 27469 0.50 13,735 16,482 4,50 5659 US 27 / SR 80 E E 13,885 84 1900 4750 32000 0.50 16,000 17,73 16,482 4,50 5665 US 41 Collier County W 2,914 5866 5241 0.50 2,621 3,93 1,745 8,88 5661 Marigold S 18,109 6222 29996 0.50 14,998 17,997 8,88 5662 MS4 (0,000 S 4,000 16 7984 0.50 3,992 5,988 1,50 5665 Marigold S 9,531 4854 1500 4408 0.50 3,992 5,988 1,507																				
Social of L1 of Margold L Social of L2 of Margold Social of L2 of L2 of Margold Social of L2 of																				4,533
Social Margini Amigrati Amigrati W 10002 Out Fill Social													1000		475.0					4,555
Solo Solo <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1900</td><td></td><td>4750</td><td></td><td></td><td></td><td></td><td>8,635</td></th<>													1900		4750					8,635
Soci (mangold Soci (ma																				8,835
5651 Margold 9,531 4654 5000 4408 0.50 2,204 3,30				S								-								
		5662			4,000	9.5	411					16		654						3,306
5662 Tri-County Rd 1.124 12 12 2235 0.50 1.118 1.67			5662 Tri-County Rd										4	12		500				

During discussions with each MPO it was concluded that "external-stations" traffic volumes would grow at a rate of 3% per year, slightly higher than socioeconomic growth within the D1RPM model area. Exceptions were for higher growth were allowed on SR60, and roadways serving NE Polk county in the vicinity of I-4 east.

County	Zone	Roadway	2010 PSWT	2035 LRTP	% Growth	Adjacent Model	% Growth	Use	% Growth	Notes
Manatee	5629	I-275	55,914	97,528	2.98%	126,764	5.07%	106,237	3.00%	limited bridge capacity
Manatee	5630	US 41 N	8,427	20,406	5.69%	42,128	16.00%	16,011	3.00%	
Manatee	5631	I-75 N	56,180	115,541	4.23%	116,218	4.27%	106,742	3.00%	
Manatee	5632	US 301	3,596	28,643	27.87%	21,036	19.40%	6,831	3.00%	
Manatee	5633	CR 579	1,087	4,220	11.53%	3,368	8.40%	2,065	3.00%	
Manatee	5634	CR 39	4,783	14,551	8.17%	10,028	4.39%	9,087	3.00%	
Polk	5635	CR 674	1,854	4,095	4.84%	4,948	6.67%	3,522	3.00%	
Polk	5636	CR 640 W	7,046	10,500	1.96%	10,733	2.09%	13,387	3.00%	
Polk	5637	CR 676	2,064	2,205	0.27%	3,240	2.28%	3,921	3.00%	
Polk	5638	SR 60 W	18,652	40,375	4.66%	54,397	7.67%	45,000	4.71%	as per Ryan 1/27/15
Polk	5639	Medulla Rd	3,223	1,260	-2.44%	1,500	-2.14%	6,124	3.00%	
Polk	5640	US 92 W	9,326	9,345	0.01%	23,139	5.92%	17,719	3.00%	
Polk	5641	I-4 W	126,966	219,260	2.91%	281,808	4.88%	241,236	3.00%	
Polk	5642	CR 582 / Knights Station Rd	5,000	11,025	4.82%	9,211	3.37%	9,500	3.00%	
Polk	5643	US 98 N	8,511	14,490	2.81%	14,797	2.95%	16,170	3.00%	
Polk	5644	SR 471	2,340	6,510	7.13%	3,425	1.85%	4,447	3.00%	
Polk	5645	SR 33	6,277	12,061	3.69%	15,418	5.83%	11,926	3.00%	
Polk	5646	US 27 N	38,043	94,032	5.89%	91,920	5.66%	72,283	3.00%	
Polk	5647	Champions Gate Blvd	11,500	38,410	9.36%	64,156	18.32%	38,410	7.80%	match previous estmiate
Polk	5648	I-4 E	103,125	189,858	3.36%	158,934	2.16%	195,938	3.00%	
Polk	5649	W Lake Wilson Rd	9,722	19,445	4.00%	26,634	6.96%	19,445	3.33%	match previous estmiate
Polk	5650	US 92 NE	7,979	21,006	6.53%	54,377	23.26%	15,160	3.00%	-
Polk	5651	CR 580 / Cypress Pkwy	27,800	21,000	-0.98%	66,446	5.56%	52,820	3.00%	
Polk	5652	SR 60 E	7,340	14,697	4.01%	15,639	4.52%	13,947	3.00%	
Okeechobee	5653	US 441 N	3,371	10,891	8.92%	4,419	1.24%	6,404	3.00%	
Okeechobee	5654	CR 68 E	2,198	4,673	4.50%	3,650	2.64%	4,176	3.00%	
Okeechobee	5655	SR 70 E	6,484	21,332	9.16%	7,613	0.70%	12,319	3.00%	
Okeechobee	5656	SR 710 SE	7,582	23,211	8.24%	5,165	-1.28%	14,407	3.00%	
Okeechobee	5657	US 98 / US 441 SE	3,077	7,578	5.85%	3,927	1.11%	5,846	3.00%	
Hendry	5658	US 27 / SR 80 E	14,615	29,051	3.95%	22,200	2.08%	27,769	3.00%	
Collier	5659	Alligator Alley	19,886	21,576	0.34%	na		37,784	3.00%	
Collier		US 41 Collier County	3,067	7,474	5.75%	na		5,827	3.00%	
Polk	5661	Marigold	19,062	26,355	1.53%	41,293	4.67%	36,218	3.00%	


EE Trips (2% growth rate)

2010							2040					
ORIGN_NAME	ORIGN_ZONE	AUTO	LT	DESTN_ZONE	DESTN_NAME		ORIGN_NAME	ORIGN_ZONE	AUTO	LT	DESTN_ZONE	DESTN_NAME
ie adjust	475	6100	0	5646	ie adjust	1.00	ie adjust	475	6100	0	5646	ie adjust
ie adjust	477	3600	0	5646	ie adjust	1.00	ie adjust	477	3600	0	5646	ie adjust
ie adjust	479	3400	0	5646	ie adjust	1.00	ie adjust	479	3400	0	5646	ie adjust
I-75 N	5631	2500	1000	5659	Alligator	1.50	I-75 N	5631	3750	1500	5659	Alligator
I-4 W	5641	12000	3500	5648	I-4 E	1.50	I-4 W	5641	18000	5250	5648	I-4 E
ie adjust	5646	6100	0	475	ie adjust	1.00	ie adjust	5646	6100	0	475	ie adjust
ie adjust	5646	3600	0	477	ie adjust	1.00	ie adjust	5646	3600	0	477	ie adjust
ie adjust	5646	3400	0	479	ie adjust	1.00	ie adjust	5646	3400	0	479	ie adjust
I-4 E	5648	12000	3500	5641	I-4 W	1.50	I-4 E	5648	18000	5250	5641	I-4 W
CR 580	5651	5000	0	5661	Marigold	1.50	CR 580	5651	7500	0	5661	Marigold
Alligator	5659	2500	1000	5631	I-75 N	1.50	Alligator	5659	3750	1500	5631	I-75 N
Marigold	5661	5000	0	5651	CR 580	1.50	Marigold	5661	7500	0	5651	CR 580

The D1RPM imports heavy truck (HT) from the Florida Statewide Model. The HT matrix contained the following "external-stations" traffic volumes.

2010 EETRIPS				
ORIGN_NAME	ORIGN_ZONE	HT	DESTN_ZONE	DESTN_NAME
I-275	5629	14	5630	US 41 N
US 41 N	5630	14	5629	I-275
I-275	5629	19	5631	I-75 N
I-75 N	5631	19	5629	I-275
I-275	5629	351	5659	Alligator
Alligator	5659	351	5629	I-275
US 41 N	5630	5	5659	Alligator
Alligator	5659	8	5630	US 41 N
I-75 N	5631	67	5659	Alligator
Alligator	5659		5631	I-75 N
Medulla Rd	5639	123	5648	I-4 E
I-4 E	5648	123	5639	Medulla Rd
I-4 W	5641		5645	SR 33
SR 33	5645	22	5641	I-4 W
I-4 W	5641	14275	5648	I-4 E
I-4 E	5648	13091	5641	I-4 W
I-4 W	5641	69	5650	US 92 NE
US 92 NE	5650	69	5641	I-4 W
I-4 W	5641	5	5652	SR 60 E
SR 60 E	5652	5	5641	I-4 W
CR 582	5642	5	5648	I-4 E
I-4 E	5648	5	5642	CR 582
US 98 N	5643	75	5648	I-4 E
I-4 E	5648	75	5643	US 98 N
SR 471	5644	58	5648	I-4 E
I-4 E	5648	58	5644	SR 471
US 441 N	5653	21	5657	US 98 / US 441 SE
US 98 / US 441 SE	5657	21	5653	US 441 N
I-275	5629	4	5658	US 27 / SR 80 E
US 27 / SR 80 E	5658	4	5629	I-275
I-75 N	5631	10	5658	US 27 / SR 80 E
US 27 / SR 80 E	5658	10	5631	I-75 N

The TRIP DISTRIBUTION Step

Notes:

1) [START]	puts start-time in runtime file
2) Preserve FF in DISTRIB	writes FRICTION FACTORS out to standard format, which allows for
	various input formats (csv, txt, dbf, xls)
3) KF	creates K-factors to reduce trip interactions with Polk County.
4) Trip Distribution	self-explanatory
5) Prepare Person Trip Table for Mode	. formats a matrix of person trips for mode choice
6) Prepare Vehicle Trip Table for Pre-assignment	formats a matrix of vehicle trips for PRE-ASSIGN
7) Pre-assignment	self explanatory.
8) Develop Congested Skims	. adds terminal times and turn penalty times to get a matrix of congested
	travel time.
9) Make RHSKIMTT for Transit	makes a matrix of congested travel times for mode choice

Trip Distribution converts trip productions and attractions to trips with a Origin and a Destination. This is accomplished using on a "Gravity Model." All trips starting in a TAZ are attracted to all other TAZ, proportional to the number of attractions and inversely proportional to the distance. Friction factors control the probability of making a certain length trip, for a certain trip purpose. For instance, going to work is relatively insensitive to how long the trip is while shopping depends much more on travel time in selecting possible destinations. These factors are developed based on observed trip lengths for the local population and come from Census and

survey data. Also, vehicle trips are loaded onto the highway network, so that congested travel times may be determined, for use in mode choice.

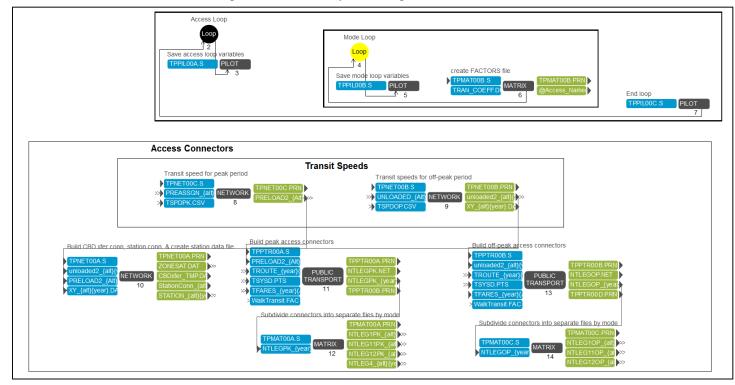
As shown, Trip Distribution is the first step included in the <u>feedback-loop</u> methodology (as recommended by the TMU project) where a weighted average of speeds and travel time from all prior highway assignments are used to minimizes differences in travel time/speed between the last highway assignment and this loop's trip distribution, mode choice, and highway assignment.

The Transit Prep step

The "TRANSITMODEL" developed by AECOM for FDOT in 2008 as the "new standard" for FSUTMS and was retained by the TMU project, and is essentially the same Mode Choice used by earlier District One MPO models (see \doc\reference\AECOM).

The model consists of four parts:

Transit Prep, links transit routes to the model's highway network and prepares auto-access park-n-ride links; *Transit Path*, generates zone-to-zone travel times and costs; and


Mode Choice, a multi-path/single-period nested-logit sub-model, assigns trips to automobiles or transit services, and; *Transit Assignment*, which puts riders on routes and generates reports.

Most of the effort in validating the transit accessibility and path building is focused on:

Transit Routes: ensuring that transit routes match the highway network and accurately reflecting base year conditions, and;

Calibration of Mode Choice: ensuring that trips, by trip purpose, compare favorably to household travel time surveys and estimated transit system ridership.

(This section contains "Tier A Transit" steps, as documented by AECOM please refer to documents in the \doc folder)

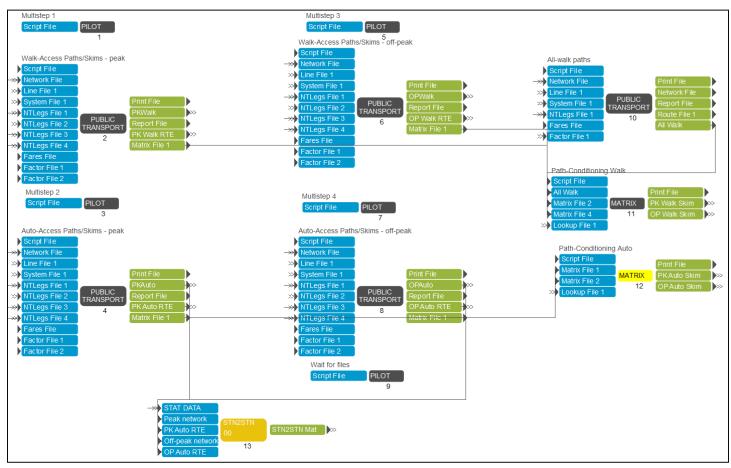


Notes:

- 1) [START] self explanatory
- 2) Loop self explanatory
- 3) Save Access Loop Variables set up for "walk" "PNR" and "KNR" modes
- 4) Loop self explanatory
- 5) Save Mode Loop Variables set up for "bus" or "project" modes
- 6) Create FACTORS file sets up PT factors by reading and formatting TRAN_COEFF.DBF
- 7) Loop end self explanatory
- 8) Transit speed for Peak Period computes PK transit speeds as a percent of auto travel time
- 9) Transit speed for Off-Peak Period computes OP transit speeds as a percent of auto travel time
- 10) Build CBD transfer connections makes file to generate CBD sidewalk coding and extracts transit station data for later use
- 11) Build Peak Access Connectors builds lists of PEAK transit travel nodes from each zone to each zone

- 12) Subdivide connectors into separate files by mode subdivides the above list into Type 1-walk, Type11- Type 12-transfer,
 - and Type 4-walk to destination only
- 13) Builds off-peak access connectors self-explanatory
- 14) Subdivide connectors into separate files by mode makes lists of mode11 mode12 and mode 4 (

(This section contains NEW steps and processes which replace AUTOCON.EXE, and was documented by Citilabs)

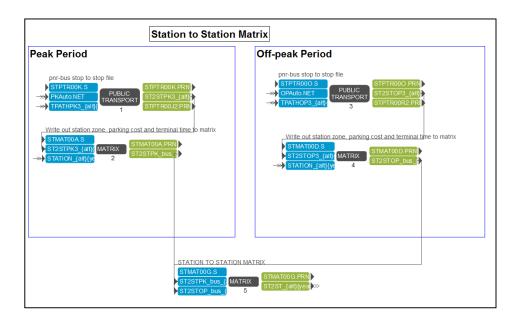

Notes:

These processes replace the AUTOCON program previously used to create auto-access connectors to transit stations.

- 15) Convert Skims from TRANPLAN to PT converts skims from TRANPLAN format to PT format
- 16) Add PK Period Parking adds PEAK period transit station data to a temporary network
- 17) Generate PK PNR & KNR Links generates PEAK period "PNR" and "KNR" links to transit stations
- 18) Add OP Period Parking adds OFF-PEAK period transit station data to a temporary network
- 19) Generate OP PNR & KNR Links generates OFF-PEAK period "PNR" and "KNR" links to transit stations

The Transit Path step

(This section contains steps, documented by AECOM)

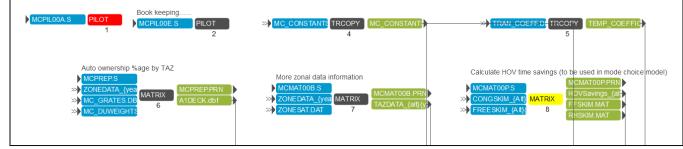


Notes:

These processes run in parallel when using cluster.

- 1) Mulistep 1 begins "distributemultistep" process
- 2) Walk Access Paths/Skims peak computes walk-access-to-transit skims PK.
- 3) Mulistep 2...... begins "distributemultistep" process
- 4) Auto Access Paths/Skims peak computes auto-access-to-transit skims PK.
- 5) Multitep 3...... begins "distributemultistep" process
- 6) Walk-Access Paths/Skims off-peak computes walk-access-to-transit skims OP.
- 7) Multistep 4..... begins "distributemultistep" process
- 8) Auto-Access Paths/Skims off-peak computes auto-access-to-transit skims OP.
- 9) Wait-for-files wait until all 4 multistep processes are finsihed.
- 10) All Walk Paths computes walk-to-destination paths.
- 11) Path Conditioning Walk compares transit skims to walk skims / keep if better than walk skims
- 12) Path Conditioning Auto compares auto-to-transit skims to transit and walk skims / keep if better than either.

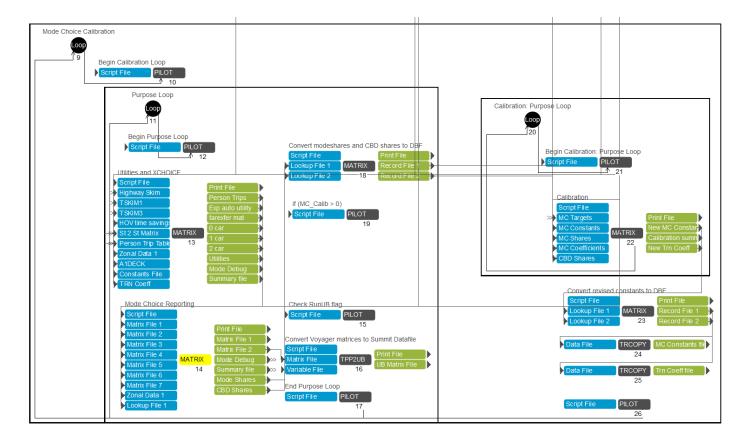
13) STN2STN


- 1) PNR bus stop-to-stop file PK retrieves PK period data from temporary network for next step.
- self-explanatory
- 3) PNR bus stop-to-stop file OP retrieves OP period data from temporary network for next step.
- $4) \ \ Write \ out \ station \ parking \ cost \ and \ terminal \ time \ to \ a \ travel \ time \ matrix \ \dots$

..... self-explanatory

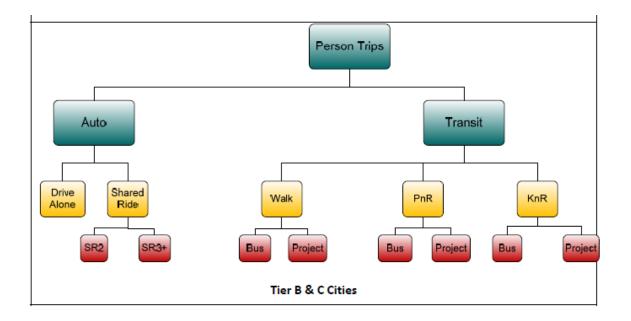
5) STATION TO STATION MATRIX

The Mode Choice step


(This section contains steps, documented by AECOM)

Notes:

110105.	
1) [START]	puts start-time in runtime file
2) Book Keeping	deletes temporary files
3) TRCOPY	
	input formats (csv, txt, dbf, xls)
4) TRCOPY	writes TRAN_COEFFFNSTANTS out to standard format, which allows for
	various input formats (csv, txt, dbf, xls)
5) Auto ownership %age by TAZ	sets up TAZ data for district reporting, if districts were previously identified
	sets up TAZ data for URBAN and EXURBAN zones
	compares HOV and non HOV time savings (for mode choice)


7) Calculate HOV time savings compares HOV and non-HOV time savings (for mode choice)

No	tes:	
1)	Mode Choice Calibration	loop
	Begin Calibration Loop	
3)	Purpose Loop	loop
	Begin Purpose Loop	
5)	Utilities and XCHOICE	. applies constants and coefficients to each skim thereby making
		matrices of trips by trip purpose from 0, 1, and 2+ auto households for
		all modes of travel.
6)	Mode Choice Reporting	. reports the results of the above step
7)	Check Run flag	. if (User Benefit Reports are desired)
8)	Convert Voyager matrices to Summit Datafile	converts matrices from step 13 into a Summit data file
9)	End Purpose Loop	. end if loop
10)	Convert modeshares and CBD shares to DBF	converts mode shares and CBD shares from a matrix to a DBF format
11)	IF (MC_Calib)	. if calibration is requested
12)	Calibration Purpose Loop	. loop
13)	Begin Calibration Purpose Loop	sets variables for PK HBW and OP HBO and OP NHB loops
14)	Calibration	. calibration, looks up coefficients and mode shares and makes
		adjustments as necessary
15)	Convert revised constants to DBF	convert constants from above to DBF
	ТКСОРУ	
17)	TRCOPY	. copy coefficients to proper format
18)	ENDIF	. end calibration loop
19)	Combine trip tables for assignment	combines all trips for subsequent highway and transit assignment
		processes
		-

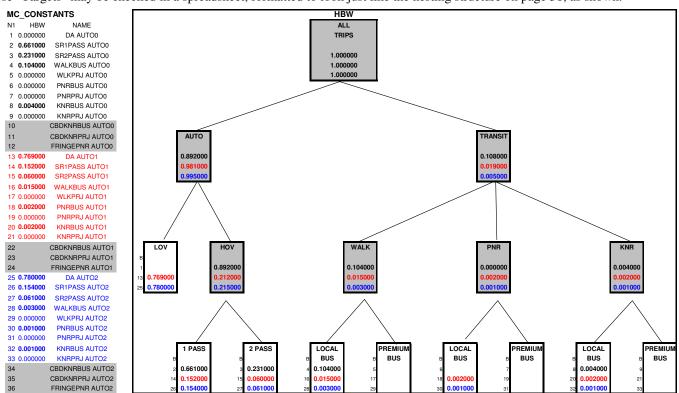
Understanding Mode Choice Theory and Application

The FSUTMS mode choice model is a behavioral model that is used to predict a traveler's choice of one alternative (mode of transportation) from a set of alternatives (all forms of transportation available), as represented in the following graphic:

District One Regional Planning Model

The nested logit mode choice model works by computing the utility for each of the <u>lower level</u> choices. This utility represents the total economic "cost" in terms of travel time to travel a given mode. This "cost" is typically constructed as a linear function of the different components of time and cost The utility for an <u>upper level choice</u> is computed by taking the log sum of the lower level nests. For example, the utility for the auto nest is computed from the utilities for LOV, 1-PASS, 2-PASS The total market is divided into zero-car, one-car, and two-car households for HBW and HBNW purposes, but market segmentation is done for the NHB trip purpose.

The "Tier A Transit" mode choice model evaluates three auto sub-modes (LOV, HOV2 and HOV3+) and three transit sub-modes, by mode of access (WALK, PNR and KNR).


The final step in the mode choice application is placing the auto vehicle portion of the access-to-transit trip onto the highway trip table.

The Mode Choice procedures included in the D1RPM provide for a rather straightforward method for achieving proper calibration of the model. A table of *"model share targets"* is utilized, which represents the most <u>recent ridership and home-based travel surveys</u>. An example is illustrated below:

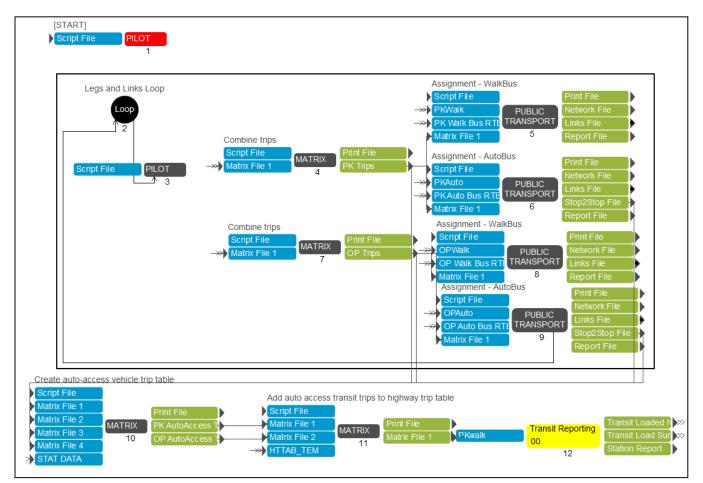
	Total		Drive	One	Two+	Total	Walk	PNR	KNR-RS	Total		Total	Drive	One	Two+	Total	Walk	PNR K	NR-RS	5
3W	Person		Alone	Pax	Pax	Auto	Bus	Bus	Bus	Percent			Alone	Pax	Pax	Auto		Bus B	JS	
ro Car HHs	68120	3.2439%		 73.15%	23.85%	97.00%	3.00%	0.00%	0.00%	100.00%	Zero Car HHs	68120		49,832	16,244	66,076	2,044	0	(D
ne Car HHs	674229	32.1068%	78.27%	15.23%	6.22%	99.72%	0.28%	0.01%	0.00%	100.00%	One Car HHs	674229	527,719	102,685	41,937	672,341	1,854	34	()
vo+ Car HHs	1357608	64.6493%	78.20%	15.36%	6.28%	99.85%	0.15%	0.01%	0.00%	100.00%	Two+ Car HHs	1357608	1,061,622	208,588	85,293	1,355,504	2,036	68	(C
OTAL	2099957										TOTAL	2099957	1,589,341	361,106	143,474	2,093,921	5,934	102	()
												aofac=	1.00	2.00	3.37					
Auto Occu=	1.16											vtrips=	1,589,341	180,553	42,574					
	Total		Drive	One	Two+	Total	Walk	PNR	KNR-RS	Total		Total	Drive	One	Two+	Total	Walk	PNR K	NR-RS	;
BO	Person		Alone	Pax	Pax	Auto	Bus	Bus	Bus		HBO	Person	Alone	Pax	Pax	Auto	Bus	Bus B	JS	
ero Car HHs	127000	4.3371%				91.50%				100.00%	Zero Car HHs	127000		, .	50,864	116,205		0)
		42.1956%								100.00%		1235569	465,050			1,232,109		62)
wo+ Car HHs	1565627	53.4673%	37.98%	35.38%	26.49%	99.85%	0.15%	0.01%	0.00%	100.00%	Two+ Car HHs	1565627	594,672	553,864	414,664	1,563,201	2,348	78	()
OTAL	2928197										TOTAL	2928197	1,059,722	1,059,774	792,020	2,911,515	16,541	140	()
												aofac=	1.00	2.00	3.49					
Auto Occu=	1.60											vtrips=	1,059,722	529,887	236,494					
	Total		Drive	One	Two+	Total	Walk	PNR	KNR-RS	Total		Total	Drive	One	Two+	Total	Walk	PNR K	NR-RS	;
IHB	Person		Alone	Pax	Pax	Auto	Bus	Bus	Bus				Alone	Pax	Pax	Auto	Bus	Bus B		
	2842339 1	00.0000%	47.92%	30.02%	 21.78%	99.72%	0.28%	0.01%	0.00%	100.00%		2842339	1,362,049	853,270	619,061	2,834,380	7,816	142)
OTAL	2842341										TOTAL	2842339	1,362,049	853,270	619,061	2,834,380	7,816	142	()
											R	aofac=	1.00	2.00	3.59		30,292	384	()
Auto Occu=	1.44											vtrips=	1,362,049	426,635	18/ 200					

Note: This table can be expanded for additional modes of travel.

These "Targets" may be checked in a spreadsheet, formatted to look just like the nesting structure on page 38, as shown.

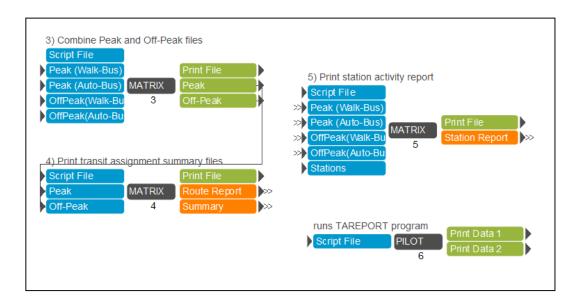
There are mode choice *constants* and mode choice *coefficients* which are used to set the sensitivity of the logit model to other factors, such as:

Level of Service Coefficients	Nesting Coefficients
In-vehicle time	Transit access
In-vehicle time, commuter rail	Transit mode
Out-of-vehicle time	Auto mode
Drive access time	Auto occupancy
Cost	Constants(default values)
Zero cars, all income	CBD, all transit
Insufficient cars	Drive alone (3)
Income < \$25K(4)	Shared ride (2 & 3+)(3)
Income \$25K-\$50K	Shared ride 3+(3)
Income > \$50K	Transit (all ride modes) (3)
Sufficient cars	Drive-transit (all ride modes) (3)
Income < \$25K	KNR-transit (all ride modes) (3)
Income \$25K-\$50K	Express bus
Income > \$50K	Urban rail
Number of Transfers	Commuter rail


A simple spreadsheet example is another way to show the inter-relationships between constants and coefficients and costs.

Attributes										
			Attribu					Assumptions		
	In-Vehicle	Wa		Wait				Distance to Bus		0.25 miles
Mode	Time	Tim		Time		ost (cents)		Distance to LR1	•	0.5 miles
Drive-Alone		20	2		0	600		Distance to Wo	rk From	0.1 miles
Shared-Ride		20	2		0	600		Distance to Wo	rk From	0.1 miles
Bus		45	7	1	0	175		Distance from H	lome to	10 miles
LRT		35	12		5	175		Automobile Ave	rage Co	10 cents
								Parking Cost at	Work	5 dollars
Parameters						-0.30048		AM Peak Bus F	requenc	20 minutes
					(0.049516		AM Peak LRT F	requenc	10 minutes
Coefficient	Abbreviatio	on Vali	ue		(0.049516				
In-Vehicle Time	IVT		-0.0250	(*minutes)						
Out-pocket Cost	OPC		-0.0020	(*cents)						
Wait Time	WAIT		-0.0500	(*minutes)		2				
Walk Time	WALK		-0.0375	(*minutes)		1.5				
Drive-Alone	DA_ASC		0.0000	(*1 if mode i	is Dı	rive Alone)				
Shared-Ride	SR_ASC		-0.3000	(*1 if mode i	is Sł	nared-Ride)				
Bus	BUS ASC		-0.5000	(*1 if mode i	is Bı	us)				
LRT	LRT_ASC		-0.4000	(*1 if mode i	is LF	RT)				
The Medition								0/ - h		
The Multinomia	i Logit Mode							%change due i increased BUS		
	Utility	Exp	(Utility)	Probability		0	riginal Probs	\$120 to \$175		
Drive-Alone	-1.7	750	0.1695	0.3704108	86		0.355720		4.13%	
Shared-Ride	-2.0	750	0.1256	0.2744071	1		0.263524		4.13%	
Bus	-2.7	375	0.0647	0.1414735	56		0.151660		-6.72%	
LRT	-2.3	250	0.0978	0.2137084	17		0.229096		-6.72%	
Sum			0.4576	1.0000000	00					
Total Auto Share				64.5			61.9%			
Total Transit Sha	are			35.59	%		38.1%			

Note: During the self-calibration mode, the model will require 30-50 iterations of the mode choice model to achieve targets.


Calibration of Mode Choice is twofold: First, auto occupancy rates are compared with other household travel time surveys, and, as can be seen in this table, the D1RPMis within expected parameters.

The Transit Assignment step

1)	Start	puts start-time in runtime file
		-

- 2) Legs and Links Loop loop
- 3) loop loop options
- 4) Combine Trips combines walk and auto-access trips for PK
- 5) Assignment WalkBus loads passengers on routes
- 6) Assignment AutoBus loads passengers on routes
- 7) Combine Trips combines walk and auto-access trips for OP
- 8) Assignment WalkBus loads passengers on routes
- 9) Assignment AutoBus loads passengers on routes
- 10) Create auto access vehicle trip table self-explanatory
- 11) Add auto access transit trips to highway trip table self-explanatory
- 12) TRANSIT REPORTING

- 3) Combine Peak and Off-Peak Files self explanatory
- 4) Print Transit Assignment Summary Files self explanatory
- 5) Print Station Activity Report self explanatory
- 6) Run TAREPORT program self explanatory

Average Fare Calculations

Each Transit service provider submitted monthly ridership and revenue reports (on following pages) from which weekday passenger ridership was calculated These reports, also yielded data to code "average fares" into the initial TFARES_10A.FAR file, shown below.

```
FARESYSTEM, NUMBER=1, LONGNAME="LAKELAND", NAME="CITRUS",
 STRUCTURE="FLAT"
                   SAME="CUMULATIVE".
  IBOARDFARE=1.00,
  FAREFROMFS=0.00,0.00,0.50,0.50,0.50,0.50
FARESYSTEM, NUMBER=2, LONGNAME="WINTER HAVEN", NAME="WHAT",
  STRUCTURE="FLAT"
                    SAME="CUMULATIVE",
 IBOARDFARE=1.03
  FAREFROMFS=0.00,0.00,0.50,0.50,0.50,0.50
FARESYSTEM, NUMBER=3, LONGNAME="PCTS", NAME="PCTS",
  STRUCTURE="FLAT" SAME="CUMULATIVE",
  IBOARDFARE=1.02,
  FAREFROMFS=0.00,0.00,0.50,0.50,0.50,0.50
FARESYSTEM, NUMBER=4, LONGNAME="COLLIER", NAME="CAT",
  STRUCTURE="FLAT" SAME="CUMULATIVE",
  IBOARDFARE=1.04,
 FAREFROMFS=0.00,0.00,0.50,0.50,0.50,0.50
FARESYSTEM, NUMBER=5, LONGNAME="LEE", NAME="LEETRAN",
STRUCTURE="FLAT" SAME="CUMULATIVE",
  IBOARDFARE=0.85
 FAREFROMFS=0.00,0.00,0.50,0.50,0.50,0.50
FARESYSTEM, NUMBER=6, LONGNAME="SARASOTA", NAME="SCAT",
 STRUCTURE="FLAT" SAME="CUMULATIVE",
  IBOARDFARE=1.08
  FAREFROMFS=0.00,0.00,0.50,0.50,0.50,0.50
FARESYSTEM, NUMBER=7, LONGNAME="MANATEE", NAME="MCAT",
  STRUCTURE="FLAT" SAME="CUMULATIVE",
  IBOARDFARE=0.85,
  FAREFROMFS=0.00,0.00,0.50,0.50,0.50,0.50
```

Note that for simplification and testing with future year model alternatives, the TFARES_10A.FAR file, shown below is utilized.

FARESYSTEM, NUMBER=1, LONGNAME="REGULAR FARES", NAME="LINEHAUL", STRUCTURE="FLAT" SAME="CUMULATIVE", IBOARDFARE=1.00, FAREFROMFS=0.00,0.00,0.50,0.50,0.50,0.50 FARESYSTEM, NUMBER=2, LONGNAME="EXPRESS/BRT FARES", NAME="EXPRESS", STRUCTURE="FLAT" SAME="CUMULATIVE", IBOARDFARE=1.50, FAREFROMFS=0.00,0.00,0.50,0.50,0.50,0.50 FARESYSTEM, NUMBER=3, LONGNAME="FREE FARES", NAME="FREE", STRUCTURE="FREE"

The graphics, below, are summaries of transit ridership and revenue reports provided by each MPO. Each graphic portrays the data, as received, on the left -- while data in the colored box at right were used to develop weekday ridership and "average" fare for use in the D1RPM. These are estimates: not all providers provided revenue data, or passengers by fare category.

Collier Area Transit Route Statistics											23 weekday 4 Saturday							
Dec-10											-							
	MONTHLY										DAILY							
	Full		Reduced		Txfr		Passes					assengers			Free	Passes /		
Route					Passengers R			Revenue			Regular			Subtotal	Under 6	Transfers		Dollar Amt
1A	2,334	\$3,502	610	\$458	566	\$35	2,453	\$4,519	30		78	20	19	117	0	-	199	\$133.16
1B	2,818	\$4,228	1,061	\$796	793	\$37	4,005	\$7,569	30		94	35	26	156	0	134	289	\$168.70
1C	3,249	\$4,877	986	\$740	839	\$26	3,648	\$7,001	30		108	33	28	169	0		291	\$188.08
2A	2,755	\$4,135	1,345	\$1,009	1,154	\$42	4,232	\$6,311	30		92	45	38	175	0		316	\$172.84
2B	2,676	\$4,013	1,138	\$854	956	\$37	3,669	\$6,139	30		89	38	32	159	0		281	\$163.46
3A	3,914	\$5,871	1,523	\$1,142	1,049	\$37	5,246	\$7,490	30		130	51	35	216	0	175	391	\$235.00
3B	2,476	\$3,715	724	\$543	505	\$25	2,785	\$4,169	30		83	24	17	124	0	93	216	\$142.76
4A	1,358	\$2,038	751	\$563	743	\$28	2,613	\$4,733	30		45	25	25	95	0	87	182	\$87.65
4B	1,153	\$1,725	378	\$284	490	\$9	2,023	\$3,072	30		38	13	16	67	0	67	135	\$67.28
5	2,796	\$4,359	532	\$399	604	\$8	2,346	\$4,487	30		93	18	20	131	0	78	209	\$158.87
6	2,270	\$3,408	894	\$671	426	\$37	1,801	\$2,611	30		76	30	14	120	0	60	180	\$137.19
7 M CIR	0	\$0	0	\$0	0	\$0	628	\$1,645	30		0	0	0	0	0	21	21	\$0.00
7 M EXP	1.532	\$2.293	335	\$251	426	\$5	857	\$1,731	30		51	11	14	76	0	29	105	\$84.98
8A CIRCULATOR	1,488	\$2,231	911	\$683	104	\$1	1,174	\$692	30		50	30	3	83	0	39	123	\$97.18
8B CIRCULATOR	1,246	\$1,869	776	\$582	75	\$0	996	\$616	30		42	26	3	70	0	33	103	\$81.69
9	2,465	\$3,695	1,097	\$823	734	\$22	2,506	\$3,428	4		616	274	184	1074	0	627	1701	\$1,134.90
Svstem Total		\$51.958	13.061	\$9,796	9.464	\$350	40,982	\$66,211			592	222	179	992		775		\$1,061.24
-,	,		,		-,		,	. ,			33%	13%	10%				100%	+ .,
											\$1.25	\$1.00				\$1.00		
											\$739	\$222		\$1,069		\$775		\$1,844
											<i><i></i><i></i></i>	V LLL	φ.σ.	\$1.08		<i></i>		\$1.04
														φ1.00				φ1.04
PCTS												23 v	veekdav	v				
Monthly Ridership F	Report-25												aturday					
MARCH	iepon-20											4 00	aturuay					
MARCH																		
Mon	thly Ridership F	Report-25										D4	AILY					
WON	Cash Passer		From	Transfe	re		Pas	000						sh Passe	agore	E	ree Tra	nsfers Total
Rea			ototal Under 6		ar Ride Picker	Citi-nac			s Δdult (1)	Student /1	I) Total Days	Rec				btotal Unde		egular
	405 147	140	692 130				3 44	16 1	. ,		6 1996 27	net	15	5	5 5	26	0	59 74
	849 467		1811 188			7			2 84		0 3080 27		31	17	18	67	0	188 114
wontiny Toldi	043 407		1011 100	, 10	Z 144	1	. 55	0	5 09	5	0 0000 27		46	23	24	07	0	247 188

15	5	5	26	0	59
31	17	18	67	0	188
46	23	24	93	0	247
25%	12%	13%		0%	131%
\$1.25	\$1.00	\$0.60			
\$58.06	\$22.74	\$14.11	\$94.91		
			\$1.02		

100%

Winter Haven Transit

2010 MON	THLY FA	RES & RII	DERS RE	EPORT				
ROUTE	Cash	Passenge	ers		Free	Passes /		Days
	Regular	Student	Eld/ Dis	Subtotal	Under 6	Transfers	Dollar Amt	
15	2791	789	742	4322	202	2056	\$582.00	27
22XW	150	13	11	174	8	89	\$33.60	4
30	2602	2201	711	5514	210	3298	\$563.85	27
40/44	1521	560	186	2267	203	1100	\$308.75	27
12	313	46	68	427	23	208	\$47.55	4
50	1531	868	415	2814	242	1316	\$408.95	27
Total	7064	3563	1650	12277	623	6543	\$1,944.70	
	58%	29%	13%					

23 weekday 4 Saturday

1	DAILY							
	Cas	sh Passeng	ers		Free	Passes /		
	Regular	Student	Eld/ Dis	Subtotal	Under 6	Transfers	Total	Dollar Amt
	103	29	27	160	7	76	244	\$21.56
	38	3	3	44	2	22	68	\$8.40
	96	82	26	204	8	122	334	\$20.88
	56	21	7	84	8	41	132	\$11.44
	78	12	17	107	6	52	165	\$11.89
	57	32	15	104	9	49	162	\$15.15
	429	178	96	703	39	362	1104	\$89.31
	39%	16%	9%		4%	33%	100%	
	\$1.25	\$1.00	\$0.60			\$1.00		
	\$536	\$178	\$57	\$772		\$362		\$1,134
				\$1.10				\$1.03

LEETRAN FY 2010 Route Statistics Passengers, Revenue, Miles, and Hours, by Route March 2010

System Total	327,318	233,845	281,916	17,231	19.77	310.50	14.30	231.58	\$0.71
490	28,014	18,647	11,011	1,072	2.56	26.14	1.69	17.40	\$0.67
450	5,025	3,056	6,384	426	0.79	11.79	0.48	7.17	\$0.61
400	56,196	36,408	30,067	1,969	1.88	28.54	1.21	18.49	\$0.65
160	104	111	1,276	43	0.08	2.40	0.09	2.57	\$1.07
150	6,028	7,010	6,716	318	0.90	18.95	1.04	22.04	\$1.16
140	88,923	60,064	62,333	3,946	1.43	22.53	0.96	15.22	\$0.68
130	12,208	10,145	10,947	685	1.12	17.82	0.93	14.81	\$0.83
120	4,604	3,582	7,744	444	0.60	10.37	0.46	8.07	\$0.78
110	10,524	9,330	13,127	603	0.81	17.45	0.71	15.47	\$0.89
100	24,302	21,350	20,967	1,164	1.16	20.88	1.02	18.35	\$0.88
90	7,229	6,411	16,775	848	0.43	8.52	0.38	7.56	\$0.89
80	2,361	1,140	4,548	262	0.52	9.02	0.25	4.36	\$0.48
70	16,843	12,909	14,190	819	1.19	20.56	0.91	15.76	\$0.77
60	3,199	2,098	8,544	389	0.38	8.23	0.25	5.40	\$0.66
50	10,215	8,173	19,125	1,007	0.54	10.14	0.43	8.12	\$0.80
40	4,575	4,025	9,003	483	0.51	9.48	0.45	8.34	\$0.88
30	10,078	7,471	12,037	782	0.84	12.89	0.62	9.55	\$0.74
20	14,091	8,928	9,013	731	1.57	19.27	0.99	12.21	\$0.63
15	7,147	4,698	6,693	477	1.07	14.99	0.70	9.85	\$0.66
10	15,652	8,288	11,414	763	1.38	20.50	0.73	10.86	\$0.53
ROUTE #	RIDERSHIP	REVENUE	MILES	HOURS	/MILE	/HOUR	/MILE	/HOUR	Passengers
	GFI	TOTAL	TOTAL	TOTAL	RIDERS	RIDERS	REVENUE	REVENUE	Revenue/
	MONTHLY								
March, 2010									

23 weekday 4 Saturday		
DAILY		
		Revenue/
Passengers	Revenue	Passengers
580	\$307	\$0.53
265	\$174	\$0.66
522	\$331	\$0.63
373	\$277	\$0.74
169	\$149	\$0.88
378	\$303	\$0.80
118	\$78	\$0.66
624	\$478	\$0.77
87	\$42	\$0.48
268	\$237	\$0.89
900	\$791	\$0.88
390	\$346	\$0.89
171	\$133	\$0.78
452	\$376	\$0.83
3,293	\$2,225	\$0.68
223	\$260	\$1.16
4	\$4	\$1.07
2,081	\$1,348	\$0.65
186	\$113	\$0.61
1,038	\$691	\$0.67
12,123	8.661	15

23 weekday 4 Saturday

23 weekda 4 Saturday						
DAILY						
	sh Passeng			Free	Passes /	
Regular	Reduced	Txfr	Subtotal	Under 6	Transfers	Total
194	73	59	325	0	143	580
89	33	27	149	0	65	265
175	66	53	293	0	129	522
125	47	38	210	0	92	373
57	21	17	95	0	42	169
127	48	38	212	0	93	378
40	15	12	67	0	29	118
209	78	63	350	0	154	624
29	11	9	49	0	22	87
90	34	27	150	0	66	268
301	113	91	505	0	222	900
130	49	39	219	0	96	390
57	21	17	96	0	42	171
151	57	46	254	0	111	452
1102	414	333	1849	0	811	3293
75	28	23	125	0	55	223
1	0	0	2	0	1	4
697	262	210	1169	0	512	2081
62	23	19	104	0	46	186
347	130	105	583	0	255	1038
4058	1524	1225	6806	0	2985	12123
33%	13%	10%			44%	100%
\$1.25	\$1.00	\$0.60	AT 004		\$1.00	
\$5,072	\$1,524	\$735	\$7,331		\$2,985	
			\$1.08			

Lakeland Regional Routes FY10-FY1	1			DAILY							
Trip Count				C	ash Pas	ssengers		Free	Transfers		
Month	Dec-10	Daily		Regular	Std	Eld/ Dis	Subtotal	Under 6	Regular	Total	Dollar Amt
#10 Shuttle	2,887	111		37	14	11	62	0	49	111	
#12 Connector	9,047	348		116	44	35	195	0	153	348	
#11 E. Main	6,920	266		89	33	27	149	0	117	266	
#20 Grove Park	7,861	302		101	38	31	170	0	133	302	
#21 Edgewood	2,700	104		35	13	10	58	0	46	104	
#22XL Bartow Express	8,053	310		104	39	31	174	0	136	310	
#30 Clvd Heights	2,011	77		26	10	8	43	0	34	77	
#31 S. Fla.	17,648	679		227	85	69	381	0	298	679	
#32 Medulla Lksd	382	15		5	2	1	8	0	6	15	
#33 S.FI Carter Rd	4,519	174		58	22	18	98	0	76	174	
#37 Bradley	808	31		10	4	3	17	0	14	31	
#40 Ariana Beacon	1,838	71		24	9	7	40	0	31	71	
#41 Central	7,580	292		98	37	29	164	0	128	292	
#42 W. Mem	9,551	367		123	46	37	206	0	161	367	
#50 Kath/Prov	6,456	248		83	31	25	139	0	109	248	
#51 Mall	17,163	660		221	83	67	371	0	290	660	
#52 N Fla	14,064	541		181	68	55	304	0	237	541	
#53 Lksd	4,116	158		53	20	16	89	0	69	158	
#56 Mall Hill	6,728	259		87	33	26	145	0	113	259	
#57 Kidron Flightline	1,055	41		14	5	4	23	0	18	41	
Sub Total	131,387	5053	•	1691	635	511	2837	0	2216	5053	\$0
				33%	13%	10%			44%	100%	
			Fare	\$1.25	\$1.00	\$0.60			\$0.00		
			Revenue	\$2,114	\$635	\$306	\$3,056		\$0		\$3,056
			Avg Fare				\$1.08				\$0.60

Manatee County Area Transit				
Passenger Trips FY 09/10			WEEKDAYS	250
Final Data Bidankis In Data	EV 40 A		SATURDAYS	104
Fixed Route Ridership by Route	FY 10 Annual	Calculate	Calculate	
	FY 10 Annual	Daily	Daily	
1 Palmetto/Ellenton	44700	Ridership 126.3	Ridership 126.27	
2 East Bradenton	66185		126.27	
3 Manatee Avenue	161941	457.5	457.46	
4 Wal-Mart at U.S. 301 /Blake Hos.				
4 Wal-Mart at U.S. 301 /Blake Hos. 6 Cortez Road	94409		266.69	
	135225		381.99	
8 Oneco/Bayshore	70955		200.44	
9 26th Street West	64138		181.18	
13 Palmetto Circulator	30223		85.38	
16 15th St. E./Tallevast	59622		168.42	
99 Palmetto/Sarasota	294940			Route Interlined
TOTAL RIDERSHIP	1022338	2888.0	2887.96	
Avg Fare			1.00	
Trolley Ridership by Route	FY 10 Annual			
Sun. Beach Express Rt. 7	5788			
Anna Maria 51	126373	357.0	free	
Anna Maria 52	135204	381.9	free	
Anna Maria 53	107247	303.0	free	
Longboat/Sarasota 54	39584	111.8	111.82	Route Interlined
TOTAL RIDERSHIP		6929.6		
Avg Fare			1.00	
		1.50	0.75	

DAILY							
Cas	h Passeng			Free	Passes /		
Regular	Reduced	Txfr	Subtotal	Under 6	Transfers	Total	Dollar An
194	73	59	325	0	143	580	\$306.9
89	33	27	149	0	65	265	\$174.0
175	66	53	293	0	129	522	\$330.6
125	47	38	210	0	92	373	\$276.7
57	21	17	95	0	42	169	\$149.0
127	48	38	212	0	93	378	\$302.7
40	15	12	67	0	29	118	\$77.7
209	78	63	350	0	154	624	\$478.1
29	11	9	49	0	22	87	\$42.2
90	34	27	150	0	66	268	\$237.4
301	113	91	505	0	222	900	\$790.7
130	49	39	219	0	96	390	\$345.5
57	21	17	96	0	42	171	\$132.6
151	57	46	254	0	111	452	\$375.7
1102	414	333	1849	0	811	3293	\$2,224.5
75	28	23	125	0	55	223	\$259.6
1	0	0	2	0	1	4	\$4.1
697	262	210	1169	0	512	2081	\$1,348.4
62	23	19	104	0	46	186	\$113.1
347	130	105	583	0	255	1038	\$690.6
4058	1524	1225	6806	0	2985	12123	\$8,66
33%	13%	10%			44%	100%	
\$1.25	\$1.00	\$0.60			\$1.00		
\$5,072	\$1,524	\$735	\$7,331		\$10,31		
			\$1.08				\$0.8

SCAT MONTHLY PASSE SCAT FY 2010 FIXED RO				VIDUAL	ROUTE					23 weekday 4 Saturday							
										DAILY							
Psgrs. Per Day ROUTE #1 Fruitville	FY 1st Quarter 488	Quarter 493	Quarter 494	Quarter 492	492				ŀ	Casl Regular 165	h Passenger: Reduced 62	Txfr 50	Subtotal 276	Free Under 6 0	Passes / Transfers 121	492	Dollar Amt
#2 Cocoanut Ave.	294	321	305	301	305					102	38	31	171	0		305	
#3 Pinecraft	187	213	191	191	196					65	25	20	110	0		196	
#4 Lido	116	131	121	116	121					40	15	12	68	0		121	
#5 Osprey-Swift	271	258	263	258	263					88	33	27	147	0		263	
#6 Beneva	1,093	1,097	1,045	1,028	1,066					357	134	108	598	0		1066	
#7 Newtown-NE.	362	357	354	364	359					120	45	36	202	0		359	
#8 Newtown-301	352	363	373	357	361					121	45	36	203	0		361	
#9 North Port	257	370	348	337	328					110	41	33	184	0		328	
#11 Siesta Key	400	463	398	402	416					139	52	42	233	0		416	
#12 No. Lockwood	680	670	663	557	672					225	85	68	378	0		672	
#13 Venice	90	93	96	381	112					38	14	11	63	0		112	
#14 Bee Ridge	323	321	330	284	328					110	41	33	184	0		328	
#15 Cattlemen	342	348	353		348					117	44	35	196	0		348	
#16 Englewood	163	194	192	231	180		#54	#18		60	23	18	101	0		180	
#17 Trail	1,481	1,505	1,486	1,023	1,480		MCAT	SCAT TOTAL		495	186	150	831	0		1480	
#18 Longboat	208	248	221	552		Route Interlined	111	221 332		74	28	22	124	0		221	
#19 Sumter Blvd.	84	0	0		84					28	11	8	47	0		84	
#20/29 Toledo/Glenallen	95	77	78	74	81					27	10	8	45	0	20	81	
#21 Englewood Loop	2	0	0	0	2					1	0	0	1	0		2	
#24/25 ScWdm/Bird	102	0	0	-	102					34	13	10	57	0		102	
#26 Venice Connector	57	51	60	47	55					19	7	6	31	0		55	
#40 Webber Limited	102	94	91	100	97		#99	#99		32	12	10	54	0		97	
#99 Palmetto	888	922	937	905	913	Route Interlined				306	115	92	512	0		913	
#215 Cocoanut-Univ.	108	121	115	111	114		833	913 1746		38	14	12	64	0		114	
# 1411 LkSara-Siesta K	176	223	240	239	219					73	28	22	123	0		219	
#1713 Trail-Jacaranda	440	542	550	523	514					172	65	52	288	0	126	514	
# 8517 Tallevast-SMH	82	85	91	87	86					29	11	9	48	0	21	86	
#9S North Port Sunday	31	41	41	58	43					15	5	4	24	0	11	43	
TOTAL	7,523	7,456	7,634	7,748	7,612				-	3199	1201	966	5366	0	2354	9558	\$0
										33%	13%	10%			44%	100%	
										\$1.25	\$1.00	\$0.60			\$1.00		
										\$3,999	\$1,201	\$579	\$5,780 \$1.08		\$2,354		\$8,133 \$0.85

Currently, the Transit and Rail Subcommittee of the Florida Model Task Force (MTF) is reviewing the TRANSITMODEL methodology and changes are expected in the near-term. Nevertheless, the TRANSITMODEL remains as the FSUTMS standard for trip-based models in Florida.

Some limitations, are described below:

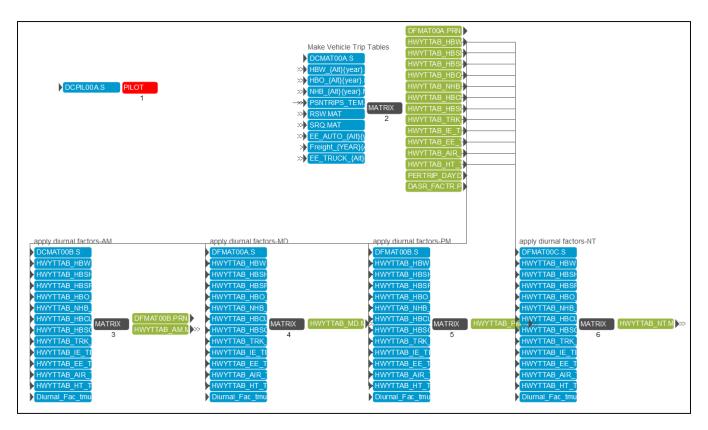
It uses one "average fare" (a problems for areas with a high percentage of senior citizens/students, who ride for half-fare).

There is no ability to calibrate ridership on a route-by-route basis (like TBEST).

Park and ride access is developed as straight-line "as-the-crows-fly" connections between each TAZ and nearby transit stations (not on roadways).

Park and ride egress is not allowed.

Non-motorized modes are not assigned to a network.


Taxi and Ridesource trips are not addressed.

The HIGHWAY ASSIGNMENT Step

SPECIAL NOTICE: These procedures only found in the D1RPM.

Diurnal Factors

Part of Highway Assignment, "Diurnal Factoring" splits daily automobile trips derived in the Mode Choice model, into trips to be assigned in four time-of-day matrices "AM" (6am-9am), "MD" (9am-3 pm), "PM" (3pm-7pm) and "NT" prior to highway assignment. Peak Periods assignments pave the way for a more precise determination of the effects of directional distribution by time of day, which affect link speeds and travel times. This is also where such things as "peak spreading" may be introduced.

1) Start	puts start-time in runtime file
2) Make Vehicle Trip Tables	. uses percent mode share to split trips by purpose, this is also where auto
	occupancy is assigned to make DA, SR2 and SR3 vehicle trips.
3) Apply Diurnal Factors AM	. trips, by purpose are factors into highway trip tables by period using the
	DIURNAL_FAC.DBF table.
4) Apply Diurnal Factors MD	. trips, by purpose are factors into highway trip tables by period using the
	DIURNAL_FAC.DBF table.
5) Apply Diurnal Factors PM	trips, by purpose are factors into highway trip tables by period using the
	DIURNAL_FAC.DBF table.
6) Apply Diurnal Factors NT	trips, by purpose are factors into highway trip tables by period using the
	DIURNAL_FAC.DBF table.

District One Regional Planning Model

Diurnal Factors split vehicle trips into four time-of-day matrices AM (6am-9am), MD (9am-3pm), PM (3pm-6pm) and NT. To explain the application of Diurnal Factors we will look at an example. The first four columns, in the graphic below, show HBW trips leaving from home-going to work. As you would expect, the highest bar is for the AM (6am-9am) period (0.4356% to be exact). So

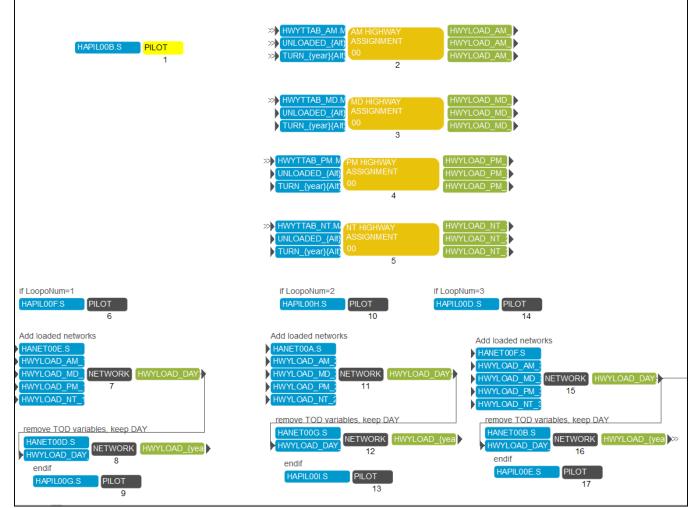
the daily person trip table would be factored so that 0.4356% of all HBW productions are placed into the AM trip matrix.

Next, looking at the second group of four columns, HBW trips return home-from work, and as you would expect, the lowest bar is for the AM (6am-9am) period (0.0175% to be exact). Again, the daily person trip table would be factored so that 0.0175% of all HBW attractions are placed into the AM trip matrix. Factors are provided for all of the trip purposes shown. The process continues until all trips are apportioned to each of the four time periods.

Next auto occupancy factors are applied. These factors are provided by the Mode Choice, which computes mode shares, for trips, by three classifications: home-based work (HBW), home-based other (HBO)and non-home-based (NHB), as shown in the graphic to the right.

In Step 2 of the Diurnal Model process all of these factors are applied, yielding the four trip purposes matrices for highway assignment: drive-alone (DA), shared-ride (SR2), shared-ride (SR3) and trucks (TRK) for each of the four time periods (AM, MD, PM, NT).

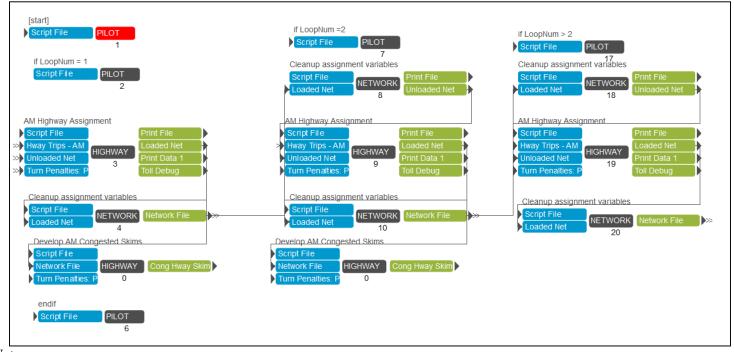
D1RPM model calibration began with the diurnal factors from the TMU project, and these were refined with ACS household travel surveys and FDOT traffic counts.


HBW	da	1,400,002	
HBW	sr2	328,303	
HBW	sr3	167,225	
HBW	total	1,895,530	
8		0.73858062	
8		0.17319867	
8		0.08822071	
нво	DA	989,302	
нво	sr2	982,515	
нво	sr3	742,514	
нво	total	2,714,330	
8		0.36447361	
8		0.36197315	
8		0.27355324	
NHB	DA	1,377,913	
	DA sr2	1,377,913 845,901	
NHB		1,377,913 845,901 515,681	
NHB NHB	sr2 sr3	845,901	
NHB NHB	sr2 sr3	845,901 515,681	
NHB NHB NHB %	sr2 sr3	845,901 515,681	
NHB NHB NHB %	sr2 sr3	845,901 515,681 2,739,495	
NHB NHB NHB	sr2 sr3	845,901 515,681 2,739,495 0.50298063	

Highway Assignment

The Highway Assignment script in the D1RPM, taken from the Olympus Model, contains the latest toll methodology prescribed by the FDOT Turnpike Enterprise District. The purpose of highway assignment models is to load auto trips onto the highway network. Highway Assignment makes "route choice" decisions for O-D pairs, resulting in traffic estimates on individual links, a simulation general vehicular travel throughout the study area. Validation of the highway assignment involves the adjustment of the speeds, capacities, penalties and other parameters related to travel time.

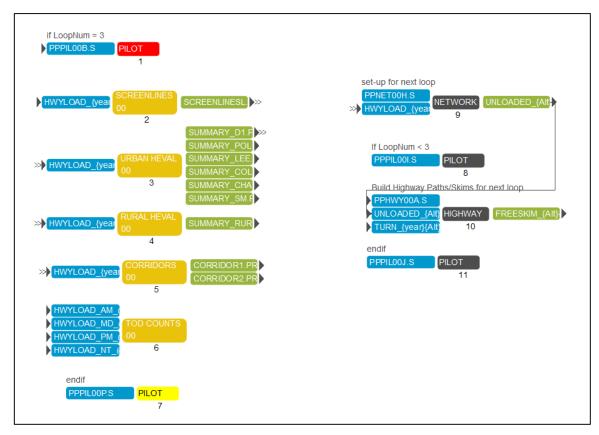
Trips are loaded onto the highway network by means of an iterative equilibrium highway load program based on an all or nothing capacity restrained assignment. Note that in the D1RPM a <u>feedback-loop</u> is utilized, whereby, congested speeds from the initial


highway assignment are fed back into the next trip distribution-mode-transit & highway processes. This minimize differences in congested speed among all of these modules. Convergence criteria are compared until the differences in travel time and travel distance were minimized. The Highway Assignment flow in the Application are shown below:

- 1) [Start] puts start-time in runtime file
- 1) AM HIGHWAY ASSIGNMENT
- 2) MD HIGHWAY ASSIGNMENT
- 3) PM HIGHWAY ASSIGNMENT
- 4) NT HIGHWAY ASSIGNMENT
- 5) **IF loop** IF on LoopNum 1
- 6) Add loaded networks self-explanatory
- 7) remove TOD variables, keep DAY self-explanatiory
- 8) endif
- 9) IF loop IF on LoopNum 2
- 10) Add loaded networks self-explanatory
- 11) remove TOD variables, keep DAY self-explanatory
- 12) endif
- 13) IF loop IF on LoopNum 3
- 14) Add loaded networks self-explanatory
- 15) remove TOD variables, keep DAY self-explanatory
- 16) endif

The Highway Assignment flow in the Application for each period is shown below. Note that only the AM Assignment is shown, as the job control for all four periods is identical

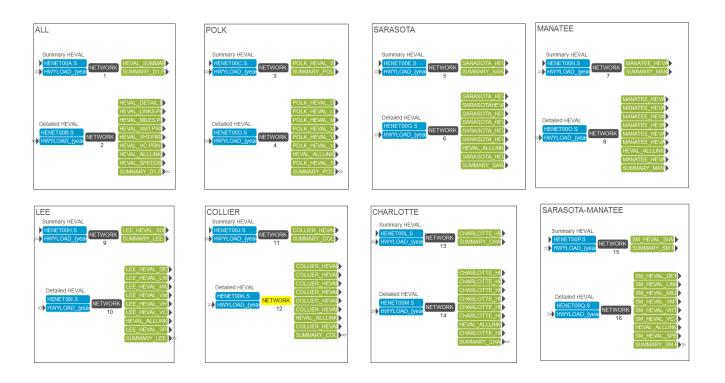
AM Assignment



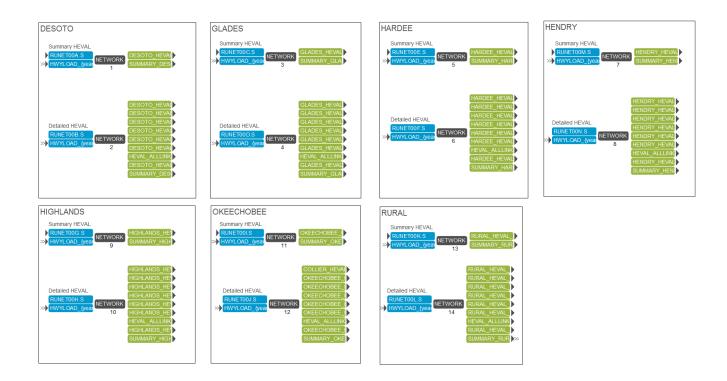
- Notes:
- 1) [Start] puts start-time in runtime file
- 2) **IF loop** IF on LoopNum 1
- 3) Add loaded networks self-explanatory
- 4) remove TOD variables, keep DAY self-explanatiory
- 5) endif
- 6) **IF loop** IF on LoopNum 2
- 7) Add loaded networks self-explanatory
- 8) remove TOD variables, keep DAY self-explanatory
- 9) endif
- 10) IF loop IF on LoopNum 3
- 11) Add loaded networks self-explanatory
- 12) remove TOD variables, keep DAY self-explanatory
- 13) endif

The POST PROCESS Step

SPECIAL NOTICE: These procedures only found in the D1RPM.


Post Processing procedures are included to provide overall model performance such as screenline and corridor reports as well as volume to capacity evaluation.

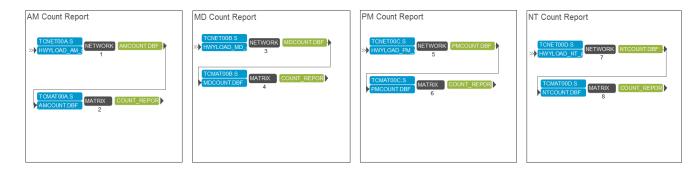
- 1) If LoopNum=3IF on LoopNum 3 i.e. don't make reports until the last loop of assignment
- 2) SCREENLINES
- 3) URBAN HEVAL
- 4) RURAL HEVAL
- 5) CORRIDORS
- 6) TOD COUNTS
- 7) endifself-explanatory
- 8) Set up for next loopremoves variables so output network is identical to an unloaded network (except congested speeds and times are retained)
- 9) If LoopNum=3self-explanatory
- Build Highway Paths/Skims for next loop.....since the next step in the feedback process is to re-run Trip Distribution, a new set of skims (using congested speeds and times from the prevous assignment is needed
- 11) endifself-explanatory


Screenlines - ALL	Screenlines - By County
Select Screenlines	Sort ByCounty
SCNET00A.S HWYLOAD_{yeat 1	SCNE TOOC.S HWYLOAD_(yea)
Sort Screenlines	Report ByCounty SCMATODC.S BC DAT 5
Sort Screenlines SCMATODE S SL DAT 3	

- 1) Select Screenlinesreport only on links with counts which are in the D1RPM model area.
- 2) Sort Screenlinesprint screenline report (summary version)
- 3) Sort Screenlinesprint screenline report (long version)
- 4) Sort by Countyself-explanatory
- 5) Report by Countyprint screenline report (county summary)

Only one process is described, below, for the entire D1RPM model area. Seven identical reports, except for the sort/exclusion are produced for the urban areas: Polk, Sarasota, Manatee, Sarasota-Manatee, Lee, Collier and Charlotte County.

- 6) **Summary HEVAL**report summary statistics only.
- 7) **Detailed HEVAL**report all statistics, a cross-classification stratified by Links, Miles, VMT, VHT, VC, SPEED


Only one process is described, below, for the entire D1RPM RURAL model area. Seven identical reports, except for the sort/exclusion are produced for the urban areas: Desoto, Glades, Hardee, Hendry, Highlands, Okeechobee and Rural.

- 8) **Summary HEVAL**report summary statistics only.
- 9) **Detailed HEVAL**report all statistics, a cross-classification stratified by Links, Miles, VMT, VHT, VC, SPEED

Select Corridor 1 CONE TO 0A.S WWYLOAD_{year 1	Select Corridor 2
SORT Corridor 1	Sort Corridor 2 COMATOOB.S SL2.DAT 4 CORRIDOR2.PR 4

10) Select Corridor 1	select all roadways matching the CORRIDOR1 key variable (user selected).
11) Sort Corridor 1	report statistics on Corridor 1
12) Select Corridor 2	select all roadways matching the CORRIDOR2 key variable (user selected).
13) Sort Corridor 2	report statistics on Corridor 2

District One Regional Planning Model

Only one process is described, below, for the AM period. All reports are identical, except for the sort/exclusion are produced for the urban areas: Polk, Sarasota, Manatee, Sarasota-Manatee, Lee, Collier and Charlotte County.

Notes:

- 1)select all counts > 0 in the AM period.
- 2)report statistics on Counts

It should be noted, here, that post processing procedures are continually evolving, depending upon the needs of the users. For example, the FDOT "FITS_EVAL" reporting for ITS evaluations is currently being tested and may be included within the model at a later

Also, as the model runs through its procedures, a number of other reports are generated (and placed in the scenario folder) which may be helpful to the user. Examples include:

Trip Generation Report (TG_REPORT.PRN), person trips, by purpose, before and after trip-balancing.

Travel Length Frequency Report (DISTRIB.PRN), trip length, by trip purpose.

Mode Split (MODESUM.TXT) trips by trip purpose.

Transit Assignment (TASUM.PRN), trip by transit route, mode, system.

Screenline Reports by system and by county in (SCREENLINES.PRN).

Model Performance to Calibration Standards, by system and county in (SUMMARY_D1.PRN).

'runtime.prn' which documents model performance.

'keys.prn' which documents model parameters used during the run.

Link Data Description

Struct	ure for data	base: G:\LI	NKS 40A.	DBF		
	of data rec					
	<mark>f last updat</mark>					
	Field Name		Width	Dec	Index	
1	A	Numeric	5		N	
2	В	Numeric	5		Ν	
3	COUNTY	Character	10		N	county name
4	CC	Numeric	2		N	county code (1-12)
5	EC_KEY	Numeric	3		N	project # (by county)
6	NEEDS_KEY	Numeric	3		N	zero or 1
7	LRTP_KEY	Numeric	2 2		N	99 = not cost feasible
8 9	ATYPE FTYPE	Numeric Numeric	2		N N	area type facility type
10	LANES	Numeric	1		N	directional lanes
10	FID	Numeric	2		N	florida ID
12	DIR	Character	2		N	cardinal direction (N,S,E,W)
13	ONEWAY	Numeric	1		N	if link is 1-way
13	LRTP_KEY1	Numeric	1		N	project # +inserted / -deleted
15	LRTP_KEY2	Numeric	2		N	project # +inserted / -deleted
16	LRTP_KEY3	Numeric	2		N	project # +inserted / -deleted
17	LRTP_KEY4	Numeric	2		N	project # +inserted / -deleted
18	LRTP_KEY5	Numeric	2		N	project # +inserted / -deleted
19	LRTP_KEY6	Numeric	2		N	project # +inserted / -deleted
20	LRTP_KEY7	Numeric	1		N	project # +inserted / -deleted
21	CONST	Numeric	2		N	"constrained"
22	TRK_RT	Numeric	1		N	"truck route"
23	TOLL	Numeric	2		N	
24	CTOLL	Numeric	9	3	N	
25	TOLLTYPE	Numeric	1		N	
26	PLZADESC	Character	16		N	
27	PLZALNSMAX	Numeric	1		N	
28	CARTOLL	Numeric	7	2	N	
29	SVCMINUTES	Numeric	1		N	
30	SVCSECONDS	Numeric	1		N	
31	TOLL_DEC	Numeric	1		N	
32	TOLL_ACC	Numeric	1		N	
33	SCREENLINE	Numeric	2		N	
34	SL_NAME	Character	15		Ν	
35	SOURCE	Character	9		N	
36	STATION_N	Numeric	4		N	
37	STATION_C	Character	6		N	
38 39	DESC AADT2006	Character	81 5		N	
39 40	AADI2006 AADT2007	Numeric Numeric	5		N N	
40 41	AADT2007 AADT2008	Numeric	1 5		N N	
41	AADT2008	Numeric	5		N	
42	AADT2009	Numeric	6		N	
43	AADT2010	Numeric	5		N	
45	AADT2011	Numeric	5		N	
46	AADT_1W	Numeric	5		N	
47	MOCF	Numeric	7	2	N	
48	DIR_COUNT	Numeric	6		N	
49	TRK_COUNT	Numeric	5		N	
50	HT_COUNT	Numeric	4		N	
51	COUNT_AM	Numeric	4		N	
52	COUNT_MD	Numeric	4		N	
53	COUNT_PM	Numeric	4		Ν	
54	COUNT_NT	Numeric	4		Ν	
55	UAB	Character	1		N	urban area boundary code
56	FUNCLASS	Numeric	1		N	functional classification
57	SV_LOSSTD	Numeric	6		Ν	service volume, LOS D

n

58	ROADWAY	Character	40		N	
59	US	Character	40		N	US Highway #
60	SR	Character	40		N	State Route #
61	CR	Character	40		N	County Route #
62	LOCAL	Character	40		N	Local Name
63	BLANK	Character	1		N	Hotar Mane
	DEFINIT	onaracter	-		1.	
Fields	after "BLAN	IK" are added	during i	Assignment		
48	DISTANCE	Numeric	8	5	N	
49	DISTANCEFT	Numeric	11	5	N	
50	UROADFAC	Numeric	4	2	N	
51	CONFAC	Numeric	4	2	N	
52	BPRCOEFF	Numeric	4	2	N	
53	BPREXPO	Numeric	3	1	N	
54	CAPACITY	Numeric	7	1	N	
55	SPEED	Numeric	10	5	N	
56	TIME	Numeric	8	5	N	
57	WALKTIME	Numeric	6	2	N	
58	SPEED0	Numeric	2		N	
59	NTCSPEED1	Numeric	10	5	N	
60	NTCSPEED2	Numeric	10	5	N	
61	NTCSPEED3	Numeric	10	5	N	
62	C_NT	Numeric	12	5	N	
63	PMCSPEED1	Numeric	10	5	N	
64	PMCSPEED2	Numeric	10	5	N	
65	PMCSPEED3	Numeric	10	5	N	
66	C_PM	Numeric	12	5	N	
67	MDCSPEED1	Numeric	10	5	N	
68	MDCSPEED2	Numeric	10	5	N	
69	MDCSPEED3	Numeric	10	5	N	
70	C_MD	Numeric	12	5	N	
71	AMCSPEED1	Numeric	10	5	N	
72	AMCSPEED2	Numeric	10	5	N	
73	AMCSPEED3	Numeric	10	5	N	
74	C_AM	Numeric	12	5	N	
75	DIRV_DAY	Numeric	5		N	Directional Volume
76	DA_DAY	Numeric	5		N	Drive-Alone Vollume
77	SR_DAY	Numeric	5		Ν	Shared-Ride Volume
78	TRK_DAY	Numeric	4		Ν	Truck Volume
79	TOTV_DAY	Numeric	6		N	Total 2-way Volume
80	CAP_DAY	Numeric	6	_	N	Capacity
81	VOLCAP_DAY	Numeric	7	5	N	Volume to Capacity
82	VC_FDOT	Numeric	7	5	N	VC to SV_LOSSTD
83	VOLCNT_DAY	Numeric	7	5	N	Volume to Count
84	VMT_DAY	Numeric	6		N	
85 86	VHT_DAY	Numeric	4 10	5	N N	
86 87	CSPD_DAY CTIME_DAY	Numeric Numeric	10 8	5	N N	
0 /	CITME_DAY	Nulleric	0	5	IN	